Differential physiological and molecular responses of susceptible and resistant tomato genotypes to Alternaria solani infection

Volume 12, Issue 3
September 2023
Pages 227-240

Document Type : Original Research

Authors

Sari Agricultural Sciences and Natural Resources University, Department of Plant Breeding and Biotechnology, Sari, Iran.

Abstract
Early blight caused by Alternaria solani is a prominent tomato, Solanum lycopersicum, disease that destroys a significant part of tomato production worldwide. Cultivating resistant cultivars is notably important in reducing damage caused by early blight disease. Therefore, comprehending the response of different genetic backgrounds to pathogen infection could enhance understanding of the mechanisms involved in plant defense systems against pathogen invasion. In the present study, the differential response of susceptible and resistant tomato genotypes to A. solani was investigated from molecular and physiological aspects. The results showed that soluble sugar content in the resistant genotype increased after pathogen inoculation. Although photosynthetic pigments such as carotenoid, chlorophyll a, and chlorophyll b content decreased in susceptible and resistant genotypes, fluorescence chlorophyll indices differed in resistant and susceptible genotypes. Also, transcription analysis revealed that in the resistant genotype, the expression of SlWRKY1 was 2.58 times more than the control at 48 hpi (hours post inoculation). However, in the susceptible genotype, the expression of the SlNAC1 was 69.12 times more than in control at 24 hpi. The findings of this research provide an improved understanding of tomato plant defense mechanisms against early blight disease.

Keywords

Subjects
Adhikari, P., Oh, Y., Panthee, D. R. 2017. Current status of early blight resistance in tomato: an update. International Journal of Molecular Sciences, 18(10): 2019. doi:https://doi.org/10.3390/ijms18102019
Agamy, R., Alamri, S., Moustafa, M. F. M., Hashem, M. 2013. Management of tomato leaf spot caused by Alternaria tenuissima Wiltshire using salicylic acid and Agrileen. International Journal of Agriculture & Biology, 15(2):.
Akhtar, K. P., Ullah, N., Saleem, M. Y., Iqbal, Q., Asghar, M., Khan, A. R. 2019. Evaluation of tomato genotypes for early blight disease resistance caused by Alternaria solani in Pakistan. Journal of Plant Pathology, 101(4): 1159–1170. doi:https://doi.org/10.1007/s42161-019-00304-8
Ali, S. H., Eisa, S. S., El-Dougdoug, K. 2006. Role of reactive oxygen species and anti-oxidants in hypersensitive local virus-infected plants. Journal of Soil Sciences and Agricultural Engineering, 31(11): 7465–7480.
Attia, M. S., Sharaf, A., Zayed, A. S. 2017. Protective action of some bio-pesticides against early blight disease caused by Alternaria solani in tomato plant. JISET International Journal of Innovative Science, Engineering and Tech, 4: 67–94.
Awan, Z. A., Shoaib, A., Khan, K. A. 2018. Variations in total phenolics and antioxidant enzymes cause phenotypic variability and differential resistant response in tomato genotypes against early blight disease. Scientia Horticulturae, 239: 216–223.
Baker, N. R., Rosenqvist, E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany, 55(403): 1607–1621.
Bhale, U. N., Kamble, S. S., Gangawane, L. V 2010. Biochemical changes in spinach infected with carbendazim resistant Alternaria spinaciae. Manag. Sci, 60: 645–654.
Bonfig, K. B., Schreiber, U., Gabler, A., Roitsch, T., Berger, S. 2006. Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta, 225(1): 1–12.
Clark, M. M. 2022. Diseases diagnosed on commercial crop samples submitted to the pei analytical laboratories plant disease diagnostic service (pdds) in 2021. Inventaire Des Maladies Des Plantes Au Canada, 55.
Formela-Luboińska, M., Chadzinikolau, T., Drzewiecka, K., Jeleń, H., Bocianowski, J., Kęsy, J., Labudda, M., Jeandet, P., Morkunas, I. 2020. The role of sugars in the regulation of the level of endogenous signaling molecules during defense response of yellow lupine to Fusarium oxysporum. International Journal of Molecular Sciences, 21(11): 4133.
García-Villaraco, A., Boukerma, L., Lucas, J. A., Gutierrez-Mañero, F. J., Ramos-Solano, B. 2021. Tomato Bio-Protection Induced by Pseudomonas fluorescens N21. 4 Involves ROS Scavenging Enzymes and PRs, without Compromising Plant Growth. Plants, 10(2): 331.
Garg, S., Kumhar, D. R., Verma, R. K., Chaudhary, K. 2020. Evaluation of biochemical changes in infected and non-infected plants of tomato with Alternaria solani. IJCS, 8(1): 1232–1235.
Genty, B., Briantais, J.-M., Baker, N. R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA)-General Subjects, 990(1): 87–92.
Ghorbanpour, A., Salimi, A., Ghanbary, M. A. T., Pirdashti, H., Dehestani, A. 2018. The effect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L.) plants. Scientia Horticulturae, 230: 134–141. doi:https://doi.org/10.1016/j.scienta.2017.11.028
Gong, C., Liu, Y., Liu, S., Cheng, M., Zhang, Y., Wang, R., Chen, H., Li, J., Chen, X., Wang, A. 2017. Analysis of Clonostachys rosea-induced resistance to grey mould disease and identification of the key proteins induced in tomato fruit. Postharvest Biology and Technology, 123: 83–93. doi:https://doi.org/10.1016/j.postharvbio.2016.08.004
He, X., Zhu, L., Xu, L., Guo, W., Zhang, X. 2016. GhATAF1, a NAC transcription factor, confers abiotic and biotic stress responses by regulating phytohormonal signaling networks. Plant Cell Reports, 35(10): 2167–2179.
Henriquez, M. A., Adam, L. R., Daayf, F. 2012. Alteration of secondary metabolites’ profiles in potato leaves in response to weakly and highly aggressive isolates of Phytophthora infestans. Plant Physiology and Biochemistry, 57: 8–14. doi:https://doi.org/10.1016/j.plaphy.2012.04.013
Herbers, K., Meuwly, P., Métraux, J.-P., Sonnewald, U. 1996. Salicylic acid‐independent induction of pathogenesis‐related protein transcripts by sugars is dependent on leaf developmental stage. Febs Letters, 397(2–3): 239–244.
Hoagland, D. R., Arnon, D. I. 1950. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347(2nd edit):
Hou, R., Shi, J., Ma, X., Wei, H., Hu, J., Tsang, Y. F., Gao, M.-T. 2020. Effect of phenolic acids derived from rice straw on Botrytis cinerea and infection on tomato. Waste and Biomass Valorization, 11(12): 6555–6563.
Howlett, B. 2006. Secondary metabolite toxins and nutrition of plant pathogenic fungi. Current Opinion in Plant Biology, 9: 371–375.
Issa, A., Esmaeel, Q., Sanchez, L., Courteaux, B., Guise, J.-F., Gibon, Y., Ballias, P., Clément, C., Jacquard, C., Vaillant-Gaveau, N. 2018. Impacts of Paraburkholderia phytofirmans strain PsJN on tomato (Lycopersicon esculentum L.) under high temperature. Frontiers in Plant Science, 9: 1397.
Kasote, D. M., Katyare, S. S., Hegde, M. V, Bae, H. 2015. Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11(8): 982.
Kuckenberg, J., Tartachnyk, I., Schmitz-Eiberger, M., Noga, G. 2007. Imaging, Early detection of leaf rust and powdery mildew infections on wheat leaves by PAM fluorescence. Precision Agriculture, 8: 515–521.
Kyseláková, H., Prokopová, J., Nauš, J., Novák, O., Navrátil, M., Šafářová, D., Špundová, M., Ilík, P. 2011. Photosynthetic alterations of pea leaves infected systemically by pea enation mosaic virus: a coordinated decrease in efficiencies of CO2 assimilation and photosystem II photochemistry. Plant Physiology and Biochemistry, 49(11): 1279–1289.
Li, R., Sheng, J., Shen, L. 2020. Nitric Oxide Plays an Important Role in β-Aminobutyric Acid-Induced Resistance to Botrytis cinerea in Tomato Plants. The Plant Pathology Journal, 36(2): 121. doi:https://doi.org/https://doi.org/10.3390/ijms18102019
Lichtenthaler, H. K., Buschmann, C. 2001. Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1): 3–4.
Liu, Y. F., Qi, M. F., Li, T. L. 2012. Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. Plant Science, 196: 8–17.
Livak, K. J., Schmittgen, T. D. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4): 402–408. doi:https://doi.org/10.1006/meth.2001.1262
McCready, R. M., Guggolz, J., Silviera, V., Owens, H. S. 1950. Determination of starch and amylose in vegetables. Analytical Chemistry, 22(9): 1156–1158.
Meena, M., Prasad, V., Upadhyay, R. S. 2017. Evaluation of biochemical changes in leaves of tomato infected with Alternaria alternata and its metabolites. Vegetos, 30(2): 1–5.
Meena, M., Zehra, A., Dubey, M. K., Aamir, M., Gupta, V. K., Upadhyay, R. S. 2016. Comparative Evaluation of Biochemical Changes in Tomato (Lycopersicon esculentum Mill.) Infected by Alternaria alternata and Its Toxic Metabolites (TeA, AOH, and AME). Frontiers in Plant Science, 7: 1408. doi:https://doi.org/10.3389/fpls.2016.01408
Moghaddam, G. A., Rezayatmand, Z., Esfahani, M. N., Khozaei, M. 2019. Genetic defense analysis of tomatoes in response to early blight disease, Alternaria alternata. Plant Physiology and Biochemistry, 142: 500–509.
Moradi, N., Rahimian, H., Dehestan, A., Babaeizad, V., Yaghoubian, Y. 2018. Screening of Cucumber Cultivars Resistant to Powdery Mildew and Comparative Assessment of Chlorophyll Florescence in Resistant and Sensitive Cultivars. Iranian Journal of Plant Protection, 37(3): 466–474. doi:https://doi.org/10.22067/JPP.V31I3.55079
Morkunas, I., Ratajczak, L. 2014. The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiologiae Plantarum, 36(7): 1607–1619.
Nafisa, Shoaib, A., Iqbal, J., Khan, K. A. 2020. Evaluation of phenotypic, physiological and biochemical attributes connected with resistance in tomato against Alternaria solani. Acta Physiologiae Plantarum, 42(5): 88. doi:https://doi.org/10.1007/s11738-020-03076-2
Parveen, A., Siddiqui, Z. A. 2022. Impact of silicon dioxide nanoparticles on growth, photosynthetic pigments, proline, activities of defense enzymes and some bacterial and fungal pathogens of tomato. Vegetos, 35(1): 83–93.
Pineda, M., Pérez-Bueno, M. L., Barón, M. 2018. Detection of bacterial infection in melon plants by classification methods based on imaging data. Frontiers in Plant Science, 9: 164.
Rabiei, Z., Hosseini, S., Dehestani, A., Pirdashti, H., Beiki, F. 2022. Exogenous hexanoic acid induced primary defense responses in tomato (Solanum lycopersicum L.) plants infected with Alternaria solani. Scientia Horticulturae, 295: 110841. doi:https://doi.org/10.1016/j.scienta.2021.110841
Rajendran, D. K., Park, E., Nagendran, R., Hung, N. B., Cho, B.-K., Kim, K.-H., Lee, Y. H. 2016. Visual analysis for detection and quantification of Pseudomonas cichorii disease severity in tomato plants. The Plant Pathology Journal, 32(4): 300.
Ramezani, M., Karimi Abdolmaleki, M., Shabani, S., Dehestani, A. 2017. The role of potassium phosphite in chlorophyll fluorescence and photosynthetic parameters of downy mildew-challenged cucumber Cucumis sativus plants. Archives of Phytopathology and Plant Protection, 50(17–18): 927–940.
Ray, S., Mondal, S., Chowdhury, S., Kundu, S. 2015. Differential responses of resistant and susceptible tomato varieties to inoculation with Alternaria solani. Physiological and Molecular Plant Pathology, 90: 78–88. doi:https://doi.org/10.1016/j.pmpp.2015.04.002
Rodríguez-Moreno, L., Pineda, M., Soukupová, J., Macho, A. P., Beuzón, C. R., Barón, M., Ramos, C. 2008. Early detection of bean infection by Pseudomonas syringae in asymptomatic leaf areas using chlorophyll fluorescence imaging. Photosynthesis Research, 96(1): 27–35.
Saleh, A., Withers, J., Mohan, R., Marqués, J., Gu, Y., Yan, S., Zavaliev, R., Nomoto, M., Tada, Y., Dong, X. 2015. Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses. Cell Host & Microbe, 18(2): 169–182.
Shao, D., Smith, D. L., Kabbage, M., Roth, M. G. 2021. Effectors of plant necrotrophic fungi. Frontiers in Plant Science, 12: 995.
Shinde, B. A., Dholakia, B. B., Hussain, K., Aharoni, A., Giri, A. P., Kamble, A. C. 2018. WRKY1 acts as a key component improving resistance against Alternaria solani in wild tomato, Solanum arcanum Peralta. Plant Biotechnology Journal, 16(8): 1502–1513.
Suárez, J. C., Vanegas, J. I., Contreras, A. T., Anzola, J. A., Urban, M. O., Beebe, S. E., Rao, I. M. 2022. Chlorophyll fluorescence imaging as a tool for evaluating disease resistance of common bean lines in the western Amazon Region of Colombia. Plants, 11(10): 1371.
Tiwari, A., Upadhyay, R. S. 2016. Alternaria alternata infection in tomato adversely affects the nutritional parameters of tomato. Technology, 12(6): 1083–1098.
Trouvelot, S., Héloir, M.-C., Poinssot, B., Gauthier, A., Paris, F., Guillier, C., Combier, M., Trdá, L., Daire, X., Adrian, M. 2014. Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Frontiers in Plant Science, 592.
Wang, F., Lin, R., Feng, J., Chen, W., Qiu, D., Xu, S. 2015. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana. Frontiers in Plant Science, 6: 108.
Wang, X., Basnayake, B. M. V. S., Zhang, H., Li, G., Li, W., Virk, N., Mengiste, T., Song, F. 2009. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Molecular Plant-Microbe Interactions, 22(10): 1227–1238.
Wu, Y., Deng, Z., Lai, J., Zhang, Y., Yang, C., Yin, B., Zhao, Q., Zhang, L., Li, Y., Yang, C. 2009. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Research, 19(11): 1279–1290.
Xing, F., Li, Z., Sun, A., Xing, D. 2013. Reactive oxygen species promote chloroplast dysfunction and salicylic acid accumulation in fumonisin B1-induced cell death. FEBS Letters, 587(14): 2164–2172.
Yao, Z., Rashid, K. Y., Adam, L. R., Daayf, F. 2011. Verticillium dahliae ’s VdNEP acts both as a plant defence elicitor and a pathogenicity factor in the interaction with Helianthus annuus. Canadian Journal of Plant Pathology, 33(3): 375–388. doi:https://doi.org/10.1080/07060661.2011.579173
Zhang, G., Liu, Y., Ni, Y., Meng, Z., Lu, T., Li, T. 2014. Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves. PLoS One, 9(5): e97322.
Zhou, J.-M. 1999. Signal transduction and pathogen-induced PR gene expression. Pathogenesis-Related Proteins in Plants, 14: 195–206.
Zou, J., Rodriguez-Zas, S., Aldea, M., Li, M., Zhu, J., Gonzalez, D. O., Vodkin, L. O., DeLucia, E., Clough, S. J. 2005. Expression profiling soybean response to Pseudomonas syringae reveals new defense-related genes and rapid HR-specific downregulation of photosynthesis. Molecular Plant-Microbe Interactions, 18(11): 1161–1174.