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Abstract: Early blight caused by Alternaria solani is a prominent tomato,
Solanum lycopersicum, disease that destroys a significant part of tomato
production worldwide. Cultivating resistant cultivars is notably important in
reducing damage caused by early blight disease. Therefore, comprehending the
response of different genetic backgrounds to pathogen infection could enhance
understanding of the mechanisms involved in plant defense systems against
pathogen invasion. In the present study, the differential response of susceptible
and resistant tomato genotypes to A. solani was investigated from molecular and
physiological aspects. The results showed that soluble sugar content in the
resistant genotype increased after pathogen inoculation. Although
photosynthetic pigments such as carotenoid, chlorophyll a, and chlorophyll b
content decreased in susceptible and resistant genotypes, fluorescence
chlorophyll indices differed in resistant and susceptible genotypes. Also,
transcription analysis revealed that in the resistant genotype, the expression of
SIWRKY1 was 2.58 times more than the control at 48 hpi (hours post
inoculation). However, in the susceptible genotype, the expression of the
SINAC1 was 69.12 times more than in control at 24 hpi. The findings of this
research provide an improved understanding of tomato plant defense
mechanisms against early blight disease.

Keywords: Chlorophyll a fluorescence, Early blight disease, gRT-PCR,
SINAC1, SIWRKY1

Introduction

Tomato Solanum lycopersicum is an important
horticultural plant due to its nutritional and
commercial value (Li et al., 2020) and is
cultivated in temperate regions (Gong et al.,
2017). Plant diseases, especially fungal
pathogens, can severely reduce tomato
production by infecting plant tissues. One of the
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most lethal fungal diseases of tomatoes is early
blight, caused by Alternaria solani Sorauer
(1896), which can reduce tomato production by
up to 80% (Nafisa et al.,, 2020). The main
strategies to control early blight disease include
the use of fungicides, cultural methods, and
resistant genotypes. Early blight is primarily
controlled by foliar spraying of certain
fungicides applied at 7-10-day intervals
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(Adhikari et al., 2017). Considering the harmful
effects of fungicides on the environment and
agricultural production, the most suitable and
sustainable way to control early blight is the
development of resistant cultivars (Adhikari et
al., 2017; Akhtar et al., 2019).

Necrotrophic pathogens like Alternaria spp.
destroy plant tissue (Shao et al., 2021) and
cause physiological disorders such as reduced
photosynthetic  efficiency (Clark, 2022).
Studies show that changes in some
physiological features are important for plant
resistance to pathogens, such as the synthesis of
sugars (Morkunas and Ratajczak, 2014),
chlorophyll fluorescence indexes (Suarez et al.,
2022), and photosynthetic pigments (Parveen
and Siddiqui, 2022). Also, concerning the
molecular  response  of  plant-pathogen
interactions, some transcription factors, such as
NAC1 and WRKY1, are considered the most
important components of resistance (Rabiei et
al., 2022; Shinde et al., 2018).

Comparing the response of susceptible and
resistant genotypes can increase our knowledge
of the mechanisms involved in plant resistance
to pathogen infection. Therefore, It is essential to
investigate the responses of susceptible and
resistant genotypes under stress conditions (Ray
et al., 2015). Although numerous studies have
been published on plant-pathogen interactions,
few have addressed the comparative response of
resistant and susceptible genotypes to pathogen
infection (Henriquez et al., 2012; Ray et al.,
2015; Yao et al., 2011).

Previous research suggests that the plant's
genetic background influences the tomato
genotype responding to A. solani stress
(Nafisa et al., 2020; Ray et al., 2015). A study
by Ray et al. (2015) found that after pathogen
inoculation, defense enzyme activity, H.0-
accumulation, and other defense compounds
are significantly higher in the resistant than in
the susceptible genotype (Ray et al., 2015). In
another study, morphological, biochemical,
and physiological responses of 29 tomato
genotypes were assessed after inoculation with
A. solani. During the disease stress, the
activity of antioxidant enzymes significantly
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differed in resistant genotypes compared with
sensitive genotypes (Nafisa et al., 2020).
However, comparative studies about plant-
pathogen interactions regarding Iranian
tomato genotypes are more limited.

The main goal and novelty of the present
study were the comparative physiological and
molecular defense reactions of two common
Iranian tomato cultivars, as resistant and
susceptible genotypes, under Alternaria solani
stress. Some physiological parameters were
employed to determine differential reactions
of resistant and susceptible genotypes under
early blight stress. Also, transcription profile
of SINAC1 and SIWRKY1 was obtained across
time, post-infection, with quantitative real-
time PCR (qRT-PCR) technique for both
resistant and susceptible tomato genotypes.

Materials and Methods

This research was conducted in research
facilities and laboratories of Genetics and
Agricultural  Biotechnology Institute of
Tabarestan, Sari, Iran. Susceptible (Karoon)
and resistant (CH falat) tomato genotypes
seeds wused throughout this study were
provided by Falat Iranian Zamin Co., Karaj,
Iran. The seeds were sown and grown in 17 cm
pots filled with a sterile soil mix (equal
volumes of peat, perlite, and coconut peat).
The pots were incubated in a growth chamber
with a photoperiod of 12 h of light (98.02
umol/s/m?), 70% humidity, and 24-27 °C and
were fertilized regularly with Hoagland’s
nutrient solution (Hoagland and Arnon, 1950).
The A. solani isolate was kindly provided by
the culture collection of the Genetics and
Agricultural  Biotechnology Institute of
Tabarestan (Culture number GTCC0073) at
Sari Agricultural Sciences and Natural
Resources University, Sari, Iran. 35-day-old
seedlings were inoculated with Alternaria
Solani spores. A spore suspension of
Alternaria Solani at 1.6 x 10° spores per ml
was used for plant inoculation. For
physiological analysis, samples were collected
seven days after inoculation. However, tomato
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leaves were collected for molecular analysis at
12, 24, 48, and 96 h post-inoculation (hpi).

Soluble sugar measurement

The anthrone colorimetric method was used to
measure the soluble sugar content of tomato
leaves (McCready et al.,, 1950). For this

purpose, 0.2 g of the fresh leaf was powdered in
liquid nitrogen. Then 10 ml of 80% methanol
was added to each sample, placed on a shaker
(150 rpm) in the dark box for 24 hours, and
centrifuged at 5000 rcf. Three ml of 10 mM
anthrone (dissolved in 70% sulfuric acid) was
added to 100 pl of the methanolic extract and
placed at 100°C (Bain-marie) for 20 minutes.
Then, the samples were transferred to room
temperature and vortexed after 10 minutes. The
absorbance of the samples was measured at a
wavelength of 620 nm. The soluble sugar
content was calculated using the glucose
standard curve (R?=0.992, Y = 0.229 x 0.0438).

Measurements of photosynthetic pigments
and chlorophyll contents

According to Lichtenthaler and Buschmann
(2001) method, the photosynthetic pigments,
including chlorophyll a (Chl a), chlorophyll b
(Chl b), as well as carotenoids were analyzed by
a spectrophotometry technique (T92+, PG
instrument limited). Hence, 1.0 cm? of fresh leaf
tissue was extracted with 80% methanol at room
temperature for 24 h in the dark and measured at
665.2 (Aess,z), 652.4 (A652,4), and 470 (A47o) nm.
Equations 1 to 3 were used for calculating the
contents of Chl a, Chl b, and carotenoid,
respectively:

Chl a (ug/mL) =16.72 Ases2 — 9.16 Ass2.4 (1
Chl b (pg/mL) =34.09 Ags2.4— 15.28 Agss.2 (2
Carotenoid (ng/mL) = (1000 A470 -1.63 3

Chla -104.6 Chlb) / 221

Measurements of chlorophyll a fluorescence

Using a portable fluorometer (PAM3000, Walz,
Germany), the Chl fluorescence was measured
(Genty et al., 1989). The plants were left in the
dark for 30 minutes, and then the minimum
fluorescence intensity (FO) and maximum
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fluorescence intensity (Fm) were measured in
dark-adapted leaves. Fv (The variable
fluorescence) and Fv/IFm (maximum
photochemical quantum vyield of PSII) were
calculated as shown in equations 4 and 5,
respectively.  Moreover, minimum (F o),
maximum (F'n), and steady-state fluorescence
(F) were measured according to the light-
adapted leaf in actinic light and 6, 7, and 8
equations, the effective photochemical quantum
yield of PSII [Y(Il)], the quantum vyield of
regulated energy dissipation [Y(NPQ)], the

quantum yield of non-regulated energy
dissipation [Y(NO)], non-photochemical
guenching (NPQ) were calculated, respectively:
Fv=Fm-F0 (4
Fv/Fm = (Fm — FO)/Fm 5
Y(Il) = (Fm—Ft)/Fm (6
Y(NPQ) = (Ft/ F'm) — (Ft /Fm) (7
Y(NO) = Ft /Fm (8
NPQ = (Fm-F'm)/ F'm 9

gRT-PCR assay

Total RNA of the plant leaf was extracted with
Threezol reagent (Riragene, Iran) according to
manufacturer instructions and then treated
with DNasel (Fermentase, Germany) to
remove DNA contamination. Based on the
manufacturer’s protocol, the RevertAid™
Reverse  Transcriptase kit (Fermentase,
Germany) was used for cDNA synthesis. Actin
gene was used as an internal reference and the
list of primers is available in Table 1. The
Maxima SYBR Green/ROX gPCR Master Mix
(Thermo Scientific) was used for gRT-PCR
reactions. The 15ul reaction mixture
contained 1.0 ul of diluted ¢cDNA sample,
0.3uM of each forward and reverse primers
and 1x real-time SYBR Green master mix. The
cycling temperature conditions were the first
denaturation at 95 °C for 8 min, followed by
40 cycles of 95 °C for 15 s, and 60 °C for 30 s.
Each sample was quantified in three biological
and two technical replications. The relative
gene expression was quantified by Livak and
Schmittgen (2001) method.
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Table 1 List of primers used for gqRT-PCR.

Gene Accession No. Sequence 5°-3° Length (bp)  Reference
. AACAGACAGGACACTCGCACT

SlActin NM_001308447.1 126 (Issa et al., 2018)
TTAGCACCTTCCAGCAGATGT
GGCAACCGGAGCTGATAAAC

SINAC1 NM_001247553.2 127 (Ghorbanpour et al., 2018)
AGGCGGTACTCGTGCATAATC
TAGCAGTGAAGTGGATGTAGTC

SIWRKY1  XM_019214874.2 155 (Moghaddam et al., 2019)

TTGGATTATGGGATGACCTCTC

Statistical analysis

The factorial experiment was based on a
completely randomized design (CRD) with three
replicates. The plant genetic backgrounds
(susceptible and resistant genotypes) were
considered the first factor, and the state of plant
inoculations  (inoculated and non-inoculated
samples) the second factor. Also, two technical
repetitions were done for molecular tests. The least
significant difference test (LSD) was performed at
1% probability for mean comparison. All statistical
analyses were carried out using SAS statistical
package (SAS Institute, Cary, NC).

Results

Sugar content

The results showed that in the resistant genotype,
the soluble sugar level significantly increased
(71.74%) after pathogen inoculation. In contrast, in
the sensitive genotype, a significant decrease
(24%) of the soluble sugar was observed after
pathogen inoculation (Fig. 1A).

Photosynthetic pigments

In this study, carotenoid content significantly
decreased (49%) in susceptible genotype
following the pathogen infection. While no
significant change was observed in the resistant
one after pathogen inoculation (Fig. 1B). The
chlorophyll a content in susceptible and resistant
genotype decreased after inoculation by 46.74
and  45%, respectively.  Similarly, the
chlorophyll b content in susceptible and resistant
genotypes were reduced by 50 and 48%,
respectively, after A. solani inoculation (Fig. 1C,
and D).
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Chlorophyll a fluorescence

Analysis of wvariance for chlorophyll a
fluorescence parameters, including Fv, Fv/Fm,
Y (NPQ), and NPQ showed a significant change
after pathogen inoculation (presented in
Supplemental Table S1). Means comparison
(LSD 99%) showed that the pathogen infection
did not significantly affect the Fv and Fv/Fm
indices in the resistant genotype. While in the
sensitive genotype, the Fv and Fv/Fm indices
were significantly reduced by 72.9 and 53%,
respectively, after pathogen inoculation (Table
2). Also, Y(NPQ) and NPQ increased in resistant
genotype after pathogen inoculation by 2.73 and
3.2 times, respectively. In contrast, Y(NPQ) and
NPQ were significantly decreased by 60% and
53.33%, respectively, in the susceptible
genotype (Table 2).

Molecular analysis

In the present study, differential expression of
two prominent genes related to stress was
investigated by the gRT-PCR technique. The
results show that SIWRKY1 was up-regulated at
12hpi, 24hpi, and 48hpi in the resistant genotype
by 1.49, 2.29, and 2.58 times more than the
control, respectively. Also, in the susceptible
genotype, the gene expression up-regulated at
12hpi and 42hpi by 1.3 and 1.4 times more than
the control, respectively (Fig. 2A).

Expression of SINAC1 expression gene in the
resistant genotype was up-regulated (27.45 times
more than control) at early steps of pathogen
penetration (12hpi). However, at 24hpi, 48hpi,
and 96 hpi the transcription levels were 4.3, 3.8,
and 1.13 times more than the control,
respectively. While in the susceptible genotype,
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expression of NAC1 gene increased by 62.73 and
96.12 times more than the control at 12hpi and
24hpi, respectively. Also, at 48hpi and 96hpi the
transcription levels were 6.5 and 1.5 times more
than the control (Fig. 2B).

Discussion

Understanding the differential response of
resistant and sensitive genotypes to pathogen
infection is fundamental in basic knowledge and
applied sciences, such as developing resistant
cultivars (Ray et al., 2015).

Sugar content

Inoculation of tomato plants using Alternaria
solani spore suspension indicated the disease
process was faster and more destructive in the
susceptible genotype than the resistant
genotype. In this study, a significant increase
of soluble sugar was observed in the resistant
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genotype. In contrast, in sensitive cases,
soluble sugar significantly decreased after
pathogen infection (Fig. 1A). Generally,
reducing sugar content indicates that the
pathogen uses plant sugar for energy and
structural purposes, as well as the inhibition of
photosynthesis due to the destruction of plant
tissue by the penetration of the pathogen. In
previous studies, a decrease in sugar content
after Alternaria sp. attack has been reported.
For example, The results of Garg et al. (2020)
on tomatoes infected by A. solani showed that
the total sugar content of leaves decreased
sharply after pathogen inoculation. Similar
results were found when the tomato was
inoculated with A. alternata (Meena et al.,
2017). Moreover, Bhale et al. (2010) observed
that the total sugar of leaves decreased after A.
spinaciae inoculation in the susceptible
spinach.
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Figure 1 Effect of the Alternaria solani on sugar contents and leaf pigments of resistant and susceptible tomato
genotypes. A) Sugar, B) Carotenoid, C) Chlorophyll a, and D) Chlorophyll b contents. +) as pathogen inoculation

and -) as no pathogen inoculation.
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Table 2 Mean comparison of the effect of Alternaria solani stress on Chlorophyll fluorescence parameters of two

tomato genotypes.

J. Crop Prot.

Genotypes Inoculation Fv Fv/Fm NPQ Y(NPQ)
CH no 432.67 £ 24.33b 0.84 £ 0.05a 0.003 £ 0.0006¢c 0.002 + 0.0001b
yes 422.44 + 24.11b 0.84 £ 0.04a 0.008 + 0.0005b 0.006 = 0.0002a
K no 493.67 + 14.15a 0.83£0.01a 0.015 £ 0.0015a 0.005 = 0.0011a
yes 133.67 + 6.66¢C 0.39£0.07b 0.007 £ 0.0009b 0.002 £ 0.0003b
In each column, means with the same letter(s) are not significantly different according to LSD test at P < 0.01.
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Figure 2 Relative gene expression profile of SIWRKY1 and SINACL1 over a time course from 12 to 96 hours post
inoculation in resistant (RG) and susceptible (SG) tomato genotypes following Alternaria solani inoculation.

stimulated (Herbers et al., 1996). Therefore, the
increase in sugar content that was observed in this
study can be part of the ability of the defense

However, sugar can act as a signalling
molecule in plant cells (Morkunas and Ratajczak,
2014) and cause plant defense systems to be
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system of the resistant genotype. Also, Formela-
Luboinska et al. (2020) stated that an increase in
sugar content enhanced the level of salicylic acid
and stimulated the ethylene production in tomato
leaves under pathogen stress (Formela-Luboinska
et al., 2020). The rapid hydrolysis of plant sugar
content by pathogenic enzymes is the main reason
for reducing sugar content during plant-pathogen
interaction. On the other hand, soluble sugars
such as sucrose, glucose, and fructose are
involved in plant-pathogen interactions in
multiple ways (Morkunas and Ratajczak, 2014;
Trouvelot et al., 2014) and improved the plant-
related defense systems to overcome biotic stress
(Formela-Luboinska et al., 2020).

Photosynthetic pigments
Carotenoid plays an antioxidant role during
oxidative stress in plants (Kasote et al., 2015)
and is considered a stress index. In this study,
although carotenoid content significantly
decreased in the resistant genotype, no
significant change was observed in the sensitive
genotype after pathogen inoculation. Awan et al.
(2018) classified different tomato cultivars based
on A. solani resistance levels. They
acknowledged that although carotenoid content
decreased in  susceptible genotypes, no
remarkable changes were observed in the
resistant group. Also, investigating tomato-A.
alternata interactions showed that carotenoid
content decreased at 96 hours after pathogen
inoculation (Tiwari and Upadhyay, 2016). In
addition, it was observed in Agamy et al. (2013)
study that A. tenuissima causes the reduction of
carotenoids in tomato leaves. The reduction of
carotenoids in tomato leaves under Alternaria
stress may be due to the release of fungal toxins
that induce oxidative stress and damage the plant
(Howlett, 2006). However, no significant change
of carotenoids in resistant genotypes may be due
to insignificant effects of oxidative stress. In
contrast, in susceptible genotypes, the reduction
of carotenoids indicates the destruction of the
plant tissue in the face of the pathogen.

The destruction of plant cells by the pathogen
appears as specific symptoms, including wilting,
growth suppression, chlorosis, necrosis, and

233

spotting. In the present study, the pattern of the
chlorophyll contents response was almost the
same in both cases and significantly decreased
after the pathogen inoculation (Fig. 1C, and D).
Similar results were observed in several studies
(Attiaetal., 2017; Meena et al., 2016). Attiaet al.
(2017) revealed that after A. solani infection, the
chlorophyll contents significantly decreased. In
another study, Meena et al. (2016) showed that
chlorophyll  contents decreased in plants
inoculated with A. alternata by 85.8% compared
with control plants. Following the pathogen
infection, the rate of ROS (reactive oxygen
species) increases on the surface of plant leaves,
and this oxidative stress can damage the
chlorophyll contents (Ali et al., 2006; Kyselakova
et al., 2011). In total, it seems that, although A.
solani could damage the leaf tissue of resistant
tomatoes, it could not cause widespread
destruction, unlike the susceptible genotype.

Chlorophyll a fluorescence

In this study the level of Fv and Fv/Fm decreased
in  susceptible genotype after pathogen
inoculation. Variable fluorescence (FV) indicates
the state of electron flow from the photosystem to
QA (Baker and Rosengvist, 2004), and a
reduction of this parameter indicates a remarkable
decrease in electrons flow rate (Ramezani et al.,
2017; Zhou, 1999). However, The Fv/Fm ratio
indicates the maximum photochemical quantum
efficiency of PSII and can be used to estimate the
amount of plant infection by pathogens (Hou et
al., 2020). Similar to the reaction of the sensitive
genotype in this research, a decrease in Fv/Fm has
been reported in banana and corn plants infected
with Fusarium (Kuckenberg et al., 2007) and also
in melon plants infected with Dickeya dadantii
(Pineda et al., 2018). Also, Moradi et al. (2018)
observed that Fv and Fv/Fm parameters in
susceptible cucumber genotypes significantly
decreased after pathogen (Podosphaera sp.)
inoculation. Similar results were obtained in
Ramezani et al. (2017) study. They stated that
stress conditions such as pathogen infection and
inducer treatment could cause a decrease in Fv
and Fv/Fm through damage to the complex of
photosystem 1.
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Also, in the present study, Y(NPQ) and NPQ
enhanced in resistant genotype after pathogen
inoculation. Plants have developed numerous
photoprotection mechanisms to mitigate the
harmful effects of reactive oxygen species
(ROS) accumulation, such as producing various
antioxidants, the hypersensitive response at the
infected site, and NPQ operation (Xing et al.,
2013). NPQ systems can dissipate extra energy
captured by Light-harvesting complex Il (Liu et
al., 2012) and protect plant photosystems.
Increasing NPQ value indicates the initiation of
photoprotection mechanisms related to the
xanthophyll cycle and the formation of ApH
through the thylakoid membranes (Zhang et al.,
2014). Instead, the reduction of NPQ can imply
the breakdown of light protection systems under
stressful conditions, which can cause significant
damage to photo complexes and plant
photosynthetic systems. Several studies have
reported a significant increase in NPQ under
biotic stress (Rajendran et al., 2016; Rodriguez-
Moreno et al., 2008; Zou et al., 2005).

On other hand Y(NPQ) and NPQ were
significantly decreased in the susceptible
genotype. Garcia-Villaraco et al. (2021) observed
that NPQ value of tomato plant declined after
inoculation with Pseudomonas fluorescens. Also,
Bonfig et al. (2006) reported that NPQ of
Arabidopsis plant decreased when infected with
P. syringae pv. tomato. They attributed this
reduction to the hypersensitivity defense reaction
that prevents the penetration and spread of the
pathogen in the plant tissue by the death of cells
around the infection site. It should be considered
that a hypersensitive reaction is suitable for
biotrophic pathogens response, while in the face
to necrotrophic pathogens like A. solani, it causes
the expansion and spread of the disease.

Molecular analysis

Previous studies about the genetic concept of
plant-pathogen interactions illustrated that
transcription factors play a remarkable role in
resistance to early blight (Moghaddam et al.,
2019; Rabiei et al., 2022; Shinde et al., 2018).
In the present study, SIWRKY1 was up-
regulated in both resistant and susceptible
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geneotypes after pathogen inoculation. Shinde
et al. (2018) showed that over-expression of
SIWRKY1 significantly enhanced the resistance
level to A. Solani penetration while early blight
disease was very aggressive in RNAI lines.
Also, a molecular study of some transcription
factors and PR genes in 35 different tomato
genotypes  under early blight stress
demonstrated that in resistant genotypes, there
is a positive correlation between SIWRKY1
expression and the two most important defense
genes, PR7 and PDF1.2 (Moghaddam et al.,
2019). However, Saleh et al. (2015) state that
WRKY1 plays a critical role in regulating the SA
signalling pathway and controls this related
plant defense system through the cytosolic form
of NPR1.

Abiotic stress such as high salinity, drought,
and pathogens infection could induce NAC1
gene expression (Wu et al., 2009). In the case of
biotic stress, this transcription factor plays a dual
role. Some reports mentioned the role of NAC1
(ATAF1) in increasing resistance to pathogens
(Wang et al., 2009), while some other studies
have discussed the role of this gene in causing
sensitivity (He et al., 2016; Wang et al., 2015).
Our results showed that in the resistant genotype,
SINAC1 expression was remarkably up-
regulated only at early steps of pathogen
penetration (12hpi). While in the susceptible
genotype, expression of NACL1 gene strongly
increased at 12, 24, and 96 hpi. Wu et al. (2009)
observed the negative function of NAC1
(ATAF1) in necrotropic disease processes. Also,
the over-expression of ATAFL1 increased the
generation of reactive oxygen species (Wu et al.,
2009). Considering the prominent effect of ROS
in the development of necrotrophic disease, it
can be concluded that NAC1 up-regulation may
sensitize the reaction of plant cells to ROS
accumulation and, consequently, help to increase
plant sensitivity after infection with necrotrophic
pathogens.

Conclusion

Molecular and physiological investigation of
plants response to pathogen infection leads to a
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deep  understanding of  plant-pathogen
interactions. Our research shows that susceptible
and resistant genotypes react differently to A.
solani infection. The reaction of the resistant
genotype against the pathogen was noteworthy
in terms of soluble sugar accumulation,
photosynthetic efficiency, and SIWRKY1 gene
expression. Soluble sugar accumulation was the
main key to the physiological reaction, which is
dominant in a different pathway. The soluble
sugar is an energy source for plant growth
development and metabolic reactions; on the
other hand, it plays the role of a signalling
molecule during plant-pathogen interactions.
Also, maintaining photosynthetic efficiency
while battling the pathogen infection is another
influential physiological point in resistance to
early blight disease. In addition, up-regulation of
SIWRKY1 gene at the primary steps can improve
the resistance level during tomato- A. solani
interactions.
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