Al-Saadi, A., Reddy, D., Duan, Y.P., Brunings, A.M., Yuan, Q. and Gabriel, D. 2007. All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation. Molecular Plant-Microbe Interactions, 20: 934–943. https://doi.org/10.1094/MPMI-20-8-0934.
Brunings, A.M. and Gabriel, D.W. 2003. Xanthomonas citri: breaking the surface. Molecular Plant Pathology, 4: 141–157. https://doi.org/10.1046/j.1364-3703.2003.00163.x.
Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S. and Kay, S. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326: 1509–1512. https://doi.org/10.1126/science.1178811.
Cervera, M., Esteban, O., Gil, M., Gorris, M.T., Martinez, M.C. and Peoa, L. 2010. Transgenic expression in citrus of single chain antibody fragments specific to Citrus tristeza virus confers virus resistance. Transgenic Research, 19 (6): 1001–1015. https://doi.org/10.1007/s11248-010-9378-5.
Cheng, W., Song, X. S., Li, H. P., Cao, L. H., Sun, K. and Qiu, X. L. 2015. Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat. Plant Biotechnology Journal, 13: 1335–1345. https://doi.org/10.1111/pbi.12352.
Dalio, R.J.D., Magalhaes, D M., Rodrigues, C.M., Arena, G.D., Oliveira, T.S., Souza-Neto, R.R., Picchi, S.C., Martins, P.M.M., Santos, P.J. C., Maximo, H. J., Pacheco, I.S., De Souza, A.A. and Machado, M.A. 2017. PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. Annals of Botany, 119(5): 749-774. https://doi.org/10.1093/aob/mcw238.
De Souza, T.A., Soprano, A.S., de Lira, N.P., Quaresma, A.J., Pauletti, B.A., Paes Leme, A.F. and Benedetti, C.E 2012. The TAL effector pthA4 interacts with nuclear factors involved in RNA-dependent processes including a HMG protein that selectively binds poly(U) RNA. PLoS One, 7: e32305. https://doi.org/10.1371/journal.pone.0032305.
Domingues, M.N., De Souza, T.A., Cernadas, R.A., De Oliveira, M.L., Docena, C. and Farah, C.S. 2010. The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair. Molecular Plant Pathology, 11: 663–675. https://doi.org/10.1111/j.1364-3703.2010.00636.x.
Domingues, M.N., Campos, B.M., De Oliveira, M.L., De Mello, U.Q. and Benedetti, C.E. 2012. TAL effectors target the C-terminal domain of RNA polymerase II (CTD) by inhibiting the prolyl-isomerase activity of a CTD-associated cyclophilin. PLoS One, 7: e41553. https://doi.org/10.1371/journal.pone.0041553.
Elgert, K.D. 2009. Immunology: Understanding the immune system, 2nd ed., Wiley-Blackwell.
Gil, M., Esteban, O., Garcia, J.A., Pena, L. and Cambra, M. 2011. Resistance to Plum pox virus in plants expressing cytosolic and nuclear single-chain antibodies against the viral RNA NIb replicase. Plant Pathology, 60: 967–976. https://doi.org/10.1111/j.1365-3059.2011.02448.x.
Gochez, A.M., Huguet-Tapia, J.C., Minsavage, G.V., Shantaraj, D., Jalan, N., Strauß, A., Lahaye, T., Wang, N., Canteros, B.I., Jones, J.B. and Potnis, N. 2018. Pacbio sequencing of copper-tolerant Xanthomonas citri reveals presence of a chimeric plasmid structure and provides insights into reassortment and shuffling of transcription activator-like effectors among X. citri strains. BMC Genomics, 19: 16. https://doi.org/10.1186/s12864-017-4408-9.
Gottig, N., Garavaglia, B.S., Garofalo, C.G., Zimaro, T. and Sgro, G.G. 2010. Mechanisms of infection used by Xanthomonas axonopodis pv. citri in citrus canker disease. In: Mendz-Vilas A, editor. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 196–204.
Gottwald, T.R., Graham, J.H. and Schubert, T.S. 2002. Citrus Canker: The pathogen and its impact. Plant Health Progress. https://doi.org/10.1094/PHP-2002-0812-01-RV.
Griep, R. A., van Twisk, C., van Beckhoven, J. R. C. M., van der Wolf, J. M. and Schots, A. 1998. Development of specific recombinant monoclonal antibodies against the lipopolysaccharide of Ralstonia solanacearum Race 3. Phytopathology, 98: 795-803. https://doi.org/10.1094/PHYTO.1998.88.8.795.
Griep R.A., Van Twisk C. and Schots A. 1999. Selection of Beet necrotic yellow vein virus-specific monoclonal antibodies from a semisynthetic combinatorial antibody library. European Journal of Plant Pathology, 105 (2): 147–156. https://doi.org/10.1023/A:1008727326113.
Hemmer, C., Djennane, S., Ackerer, L., Hleibieh, K., Marmonier, A., Gersch, S., Garcia, S., Vigne, E., Komar, V., Perrin, M., Gertz, C., Belval, L., Berthold, F., Monsion, B., Schmitt-Keichinger, C., Lemaire, O., Lorber, B., Gutiérrez, C., Muyldermans, S., Demangeat, G. and Ritzenthaler, C. 2018. Nanobody-mediated resistance to Grapevine fanleaf virus in plants. Plant Biotechnology Journal, 16(2): 660-671. https://doi.org/10.1111/pbi.12819.
Hust, M., Maiss, E., Jacobsen, H.J. and Reinard, T. 2002. The production of a genus-specific recombinant antibody (scFv) using a recombinant potyvirus protease. Journal of Virological Methods, 106: 225–233. https://doi.org/10.1016/S0166-0934(02)00166-0.
Hu, Y., Zhang Hu, Y., Sosso, J., Jia, H., Frommer, D., Li, T., Yang, W.B., White, B., Wang, F.F. and Jones, J.B. 2014. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proceeding of the National Academy of Sciences of the USA, 111: 521–529. https://doi.org/10.1073/pnas.1313271111.
Jia, H., Orbovic, V., Jones, JB. and Wang, N. 2016. Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection. Plant Biotechnology Journal, 14: 1291-1301. https://doi.org/10.1111/pbi.12495.
Kay, S. and Bonas, U. 2009. How Xanthomonas type III effectors manipulate the host plant. Current Opinion in Microbiology, 12: 1–7. https://doi.org/10.1016/j.mib.2008.12.006.
Kunik, V., Peters, B. and Ofran, Y. 2012. Structural Consensus among Antibodies Defines the Antigen Binding Site. PLOS Computational Biology, 8(2): e1002388. https://doi.org/10.1371/journal.pcbi.1002388.
Li, W., Xu, Y.P., Zhang, Z.X., Cao, W.Y., Li, F., Zhou, X., Chen, G.Y. and Cai, X.Z. 2012. Identification of genes required for non-host resistance to Xanthomonas oryzae pv. oryzae reveals novel signaling components. PLoS ONE, 7: 1–11. https://doi.org/10.1371/journal.pone.0042796.
McCafferty, J., Griffiths, A.D., Winter, G. and Chiswell, D.J. 1990. Phage antibodies: filamentous phage displaying antibody variable domains. Nature, 348(6301): 552-554. https://doi.org/10.1038/348552a0.
Mokhtari, M., Safarnejad, M.R., Alavi, S.M. and Torkamanzehi A. 2015. Isolation, gene expression and PthA effector protein production of Xanthomonas citri subsp. citri causal agent of citrus bacterial canker. Journal of Agricultural Biotechnology, 7(2): 155-170. https://doi.org/10.22103/jab.2015.1370.
Moscou, M.J. and Bogdanove, A.J. 2009. A simple cipher governs TAL effector-DNA recognition. Science, 326: 1501. https://doi.org/10.1126/science.1178817.
Mysore, K.S. and Ryu, C.M. 2004. Nonhost resistance: how much do we know?. Trends in Plant Science, 9: 97-104. https://doi.org/10.1016/j.tplants.2003.12.005.
Pereira, A.L., Carazzolle, M.F., Abe, V.Y., De Oliveira, M.L., Domingues, M.N. and Silva, J.C. 2014. Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response. BMC Genomics, 15: 157. https://doi.org/10.1186/1471-2164-15-157.
Peschen, D., Schillberg, S. and Fischer, R. 2016. Antibody-mediated pathogen resistance in plants. Methods in Molecular Biology, 1385: 273-291. https://doi.org/10.1007/978-1-4939-3289-4_19.
Raeisi, H., Safarnejad, M.R., Alavi, S.M., Elahinia, S.A. and Farrokhi, N. 2018. Production of polyclonal phages harbouring antibody fragment genes against Xanthomonas citri subsp. citri using phage display technology. Journal of Applied Entomology and Phytopathology, 85(2): 265-276. https://doi.org/10.22092/jaep.2017.115980.1194.
Roeschlin, R.A., Favaro, M.A., Chiesa, M.A., Alemano, S., Vojnov, A.A., Castagnaro, A.P., Filippone, M.P., Gmitter, F.G .J, Gadea, J. and Marano, M.R. 2017. Resistance to citrus canker induced by a variant of Xanthomonas citri ssp. citri is associated with a hypersensitive cell death response involving autophagy-associated vacuolar processes. Molecular Plant Pathology, 18(9): 1267-1281. https://doi.org/10.1111/mpp.12489.
Romer, P., Hahn, S., Jordan, T., Strauss, T., Bonas, U. and Lahaye, T. 2007. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science, 318: 645–648. https://doi.org/10.1126/science.1144958.
Safarnejad, M.R., Fischer, R. and Commandeur, U. 2008. Generation and characterization of functional recombinant antibody fragments against tomato yellow leaf curl virus replication-associated protein. Communications in agricultural and applied biological sciences, 73(2): 311-321.
Safarnejad, M.R., Fischer, R. and Commandeur, U. 2009. Recombinant-antibody-mediated resistance against Tomato yellow leaf curl virus in Nicotiana benthamiana. Archives of Virology, 154 (3): 457–467. https://doi.org/10.1007/s00705-009-0330-z.
Surendran, S., Mathai, A. and Radhakrishna, V.V. 2015. Western blotting, In: Kurien, B. T. and Scofield, R. H. (Eds.), Methods in Molecular Biology, Springer, New York, Vol. 1312, pp. 105-108.
Swarup, S., Yang, Y., Kingsley, M.T. and Gabriel, D.W. 1992. A Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on non-hosts. Molecular Plant Microbe Interactions, 5: 204-213. https://doi.org/10.1094/MPMI-5-204.
Szurek, B., Marois, E., Bonas, U. and Van den Ackerveken, G. 2001. Eukaryotic features of the Xanthomonas type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. Plant Journal, 26: 523–534. https://doi.org/10.1046/j.0960-7412.2001.01046.x.
Tavladoraki, P., Benvenuto, E. and Trinca, S. 1993. Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature, 366: 469472. https://doi.org/10.1038/366469a0.
Yang, Y. and Gabriel, D.W. 1995. Xanthomonas avirulence pathogenicity gene family encodes functional plant nuclear targeting signals. Molecular Plant Microbe Interaction, 8: 627-631. https://doi.org/10.1094/MPMI-8-0627.
Yang, Z.Y., Liu, H., Zheng, Z., Wang, R., Wang, S. and Zhuang, Z. 2013. Preparation of scFv against HrpA of Pseudomonas syringae pv. tomato DC3000. African Journal of Microbiology Research, 7(44): 5090-5096. https://doi.org/10.5897/AJMR12.1661.
Yuan, Q., Jordan, R., Brlansky, R. H., Istomina, O. and Hartung, J. 2015. Development of single chain variable fragment (scFv) antibodies against Xylella fastidiosa subsp. pauca by phage display. Journal of Microbiological Methods, 117: 148–154. https://doi.org/10.1016/j.mimet.2015.07.020.
Yuan, Q., Jordan, R., Brlansky, R.H., Minenkova, O. and Hartung, J. 2016. Development of single chain variable fragment (scFv) antibodies against surface proteins of ‘Ca. Liberibacter asiaticus’. Journal of Microbiological Methods, 122:1-7. https://doi.org/10.1016/j.mimet.2015.12.015.
Zhang, Y. 2008. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9: 40. https://doi.org/10.1186/1471-2105-9-40.
Zhang, J., Huguet-Tapia, J.C., Hu, Y., Jones, J., Wang, N., Liu, S. and White, F.F. 2017 Homologues of CsLOB1 in citrus function as disease susceptibility genes in citrus canker. Molecular Plant Pathology, 18: 798-810. https://doi.org/10.1111/mpp.12441.