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Introduction

Abstract: The Xanthomonas citri pv. citri (Xcc) is causal agent of bacterial citrus
canker which is major disease of citrus throughout the world. The pthA bacterial
effector protein is presented within the infected plants and indispensable of canker.
The scFv antibodies are valuable tools for diagnosis and suppression of pathogens
within plants. The present article describes developing and characterization of
specific recombinant monoclonal scFv antibodies against pthA effector protein.
For this aim, the gene encoding pthA protein was heterologously expressed in
Escherichia coli and used for screening of Tomlinson phage display antibody
library to pinpoint specific single chain variable fragment (scFv). In each round of
panning, the affinity of phage towards pthA was checked by enzyme linked
immunosorbent assay (ELISA). The data was indicative of about 50% of the
monoclonal phages to be reactive strongly against pthA protein. Among the
positive clones, 5 samples (A12, B8, C1, H8 and G8) were capable of detecting
Xcc-infected plant samples and recombinant pthA protein. Restriction fragment
length polymorphism showed similar banding pattern for all 5 scFvs as renamed to
pthA-scFG8. HB2151 E. coli cells were infected by the phage bearing pthA-
scFG8, and the expression of the peptide was induced by IPTG to produce a 30
kDa recombinant molecule. I-TASSER was used for homology modeling of both
scFv and pthA and docking was carried out by Hex program. The latter
demonstrated binding energy of —784 kcal/mol in scFv-pthA.
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recombinant antibodies by the virtue of phage
display has promised both plant pathologists and
plant growers a rather efficient and rapid
diagnostic tactic (Hust et al., 2002; Safarnejad et
al., 2008; Yang et al., 2013; Yuan et al., 2015),
next to providing opportunities to circumvent
such devastating effects (Tavladoraki et al., 1993;
Safarnejad et al., 2009; Cervera te al., 2010;
Hemmer et al., 2018). The latter mainly comes
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with the introduction of the genes encoding single
chain variable fragment (ScFv) to the host plant
genomes Vvia transgenesis. The gene encoding a
recombinant antibody is made up of a variable
heavy and light chains connected with a short
polypeptide linker. The recombinant antibody
would be capable of binding to varieties of target
proteins such as phytoplasma surface protein
(Yuan et al., 2016), viral coat proteins or other
enzymes involved in virus proliferation (Gil et al.,
2011), fungal hydrolytic enzymes that are active
in pathogenesis (Cheng et al., 2015; Peschen et
al., 2016), and bacterial effector proteins.

The effector protein of Xanthomonas citri
subsp. citri (Xcc), the causative agent of Citrus
canker, is pthA that leads to hypersensitive
response  (HR) in resistant hosts and
pathogenicity in susceptible genotypes (Gottig et
al., 2010; Roeschlin et al., 2017) and non-host
plants (Mysore and Ryu, 2004). Thus, it is being
considered as the major determinant of Xcc
pathogenicity (Brunings and Gabriel, 2003; Al-
Saadi et al., 2007). The complete nucleotide
sequence of pthA has 17.5 copies of 102-bp
repeats, tandem repeats of 34 amino acids, three
nuclear localization signals (NLSs) to direct the
pthA into the host nucleus (Swarup et al., 1992;
Domingues et al., 2010; Pereira et al., 2014), and
C-terminal transcriptome activation conserved
domain. The protein belongs to AvrBs3/pthA
family also known as transcription activator-like
(TAL) effectors that is being translocated to the
host plant via a type Il effector protein (Rémer
et al., 2007). The tandem repeats of pthA amino
acids are proposed to be involved in protein-
protein and protein-DNA interactions (Boch et
al., 2009; Moscou and Bogdanove, 2009). This
section apparently defines both pathogenicity
and avirulence (Yang and Gabriel, 1995; Kay
and Bonas, 2009). It was shown that the pthA
interacts with a-importins (Szurek et al., 2001,
Domingues et al., 2010), cyclophilin,
thioredoxin and ubiquitin conjugating enzyme
(Domingues et al., 2010, 2012), high mobility
group (HMG), and poly(A)-binding proteins (De
Souza et al., 2012). Overall, it has been proposed
that TAL effectors such as pthA functioning to
affect mRNA processing and translation (De
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Souza et al., 2012), activate host transcription by
inhibiting peptidyl-prolyl cis-trans isomerase
activity of cyclophilin through binding to its
regulatory C-terminus domain (Domingues et
al., 2012), and targeting the promoters of some
genes such as lateral organ boundary (Hu et al.,
2014; Jia et al., 2016; Zhang et al., 2017), 2-o0xo-
glutarate/FE(I1)-dependent dioxygenase (DIOX)
and CCNBS genes (Pereira et al., 2014). Given
that, the pthA is a specific protein of the
pathogen, it could be a good candidate to
develop a recombinant antibody for serological
test or production of resistant plants to Xcc.

Xcc causes severe damages to many Citrus
species, affecting quality loss via forming yellow
chlorotic rings on fruits and other parts, and
finally leads to significant yield reduction
(Gottwald et al., 2002; Li et al, 2012).
Therefore, developing any means that help to
reduce the use of chemical bactericides and
antibiotics would be beneficial for human health,
off-target organisms, and the environment.

Here and for the first time, we have developed
a scFv antibody against pthA via screening a
human combinatorial phage peptide library,
followed by bioassay of the heterologously
expressed antibody in E. coli to further
corroborate on its specificity towards Xcc. The
results were complemented with molecular
docking of the scFv antibody within the pthA.

Materials and Methods

Production of pthA recombinant protein

A partial sequence of pthA (606 bp) from the
COOH-terminal of the native sequence with the
highest antigenicity index was cloned in
pET28a with NHx-terminally 6x His tag
(Mokhtari et al., 2015). Protein expression was
induced in E. coli Rosetta strain (DE3) by 1
mM IPTG for 16 h and purified under native
condition by immobilized metal ion affinity
chromatography (Qiagen, Hilden, Germany)
following the manufacturer’s manual. Purified
protein was separated on 12% SDS-PAGE
(Supplementary Fig. 1) and blotted onto a
membrane to be treated by commercial anti-His
tag (Abcam, UK) (Surendran et al., 2015).
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Figure 1 Screening of selected clones from Tomlinson | libraries in monoclonal phage ELISA. Binding activity of
selected monoclonal phages (A) and soluble scFv antibodies (B) to pthA protein were assayed via indirect ELISA.

Phage panning and screening

Tomlinson | naive scFv phage libraries (Source
Bioscience, UK) were used for selection of
specific monoclonal antibody against pthA
protein of Xcc. Preparation of phage library was
performed using a TG1 library culture upon
infection with M13KO07 helper phage and the
titer was determined. Phage particles were
rescued from infected bacteria using M13KO7
helper phage. Purified phage were used in the
next round of biopanning. Finally, three rounds
of panning were carried out (Raeisi et al., 2018).

Identification of specific recombinant phage
to pthA

Screening was carried out by phage-ELISA. E. coli
TGL cells were infected with 100 pl of eluted
phage and plated on TYE agar containing 1%
(W) glucose and 100 pg/ml ampicillin. Bacterial

419

colonies (94) were arbitrarily selected and were
cultured in a microtiter plate. Bacterial cells were
grown in 2 x YT (16 ¢/l tryptone, 10 ¢/l yeast
extract, 5 g/l NaCl, pH = 7.2) containing 100 pg/ml
ampicillin and 1% (w/v) glucose at 37 °C. Helper

phage suspension was added (~109 cfu) at ODggo =
0.4. For each phage clone, one well was coated
with 10 ug/ml pthA and blocked with 3% BSA in 1
x PBS and another uncoated well blocked as a
control. Phages were added to the coated plates and
incubated at 37 °C for 2 h and washed three times
in 0.1% PBST. The reaction between bound
phages and antigen (pthA) was detected with anti-
M13 antibodies conjugated to horseradish
peroxidase (Abcam, UK) for 1 h at 37 °C in the
presence of 2, 2-azino-di-3-ethylbenz-thiazoline
sulfonate (ABST) (Fermentase, Vilnius, Lithuania).
The absorbance was recorded at 405 nm in an
ELISA reader (Tecan, Switzerland).
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Production of soluble scFv antibodies

To induce scFv production, HB2151 E. coli cells
were infected with produced monoclonal phage
supernatant. Bacterial cells were grown in 2 x YT
containing 100 pg/ml ampicillin and 0.1% (w/v)
glucose at 37 °C. The induction was initiated at
ODgsw = 0.7 - 0.8 with 1 mM isopropyl-p-D-
thiogalactoside (IPTG) for 16 h at 30 °C. The
cells were isolated by centrifugation (2000 x g /
10 min / 4 °C) and supernatants were used for
subsequent assays. For each analyzed scFv
fragment, a well was coated with 10 ug/ml pthA
in PBS and blocked with 3% BSA in PBS
whereas an uncoated well was blocked as a
control. After three times of washing with 0.1%
PBST, the prepared cell culture supernatants were
added to the coated plates, the plates were
incubated at 37 °C for 2 h, and washed three times
in 0.1% PBST. The anti-c-myc tag antibody
(Abcam, USA) was incubated in each well for 2 h
at 37 °C and washed three times in 0.1% PBST.
The reactions between antibodies and antigens
were detected by adding horseradish peroxidase-
conjugated goat anti-mouse IgG (Abcam, UK) for
1 h at 37 °C. After final wash with PBST, the
color reaction was initiated by adding ABST as
substrate for a period of 30 - 60 min at 22 °C. The
absorbance was recorded at 405 nm in an ELISA
reader. Reacting clones shown in ELISA were
used selectively for western blot.

To evaluate the specificity of the produced
antibody against Xcc, indirect ELISA against the
plant protein extracts from healthy and infected
lime was performed. Extraction of plant protein
was carried out in 1:3 (w/v) extraction buffer (1x
PBS, pH = 7.5, 5 mM EDTA, 5 mM -
mercaptoethanol or 2% (v/v) polyvinyl
pyrrolidone in PBS). Wells of the microplate were
coated by healthy and infected plant extracts and
purified recombinant pthA protein as the positive
control and stored at 4 °C for 16 h. The pthA-scFv
antibodies were added and incubated for 2 h at 37
°C. Reaction between antibodies and antigens
were detected by adding anti-c-myc tag antibody
at 37 °C for 2 h that followed by goat anti-mouse
IgG conjugated with horseradish peroxidase for 1
h at 37 °C. The substrate (ABST) was added for a
period of 30 - 60 min at 22 °C. The absorbance
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was read at 405 nm in an ELISA reader. The
samples were considered as positive where the
mean ELISA (Ass nm) value of sample was at
least twice greater than that of the negative
control.

Western blot analysis of pthA proteins using
scFv antibodies

Purified pthA and bovine serum albumin (BSA)
were separated on SDS-PAGE. Proteins were
transferred to  Millipore  polyvinylidene
difluoride (PVDF) membrane (Sigma-Alderic,
Germany) according to the instructions by the
manufacturer. After blocking with PBS buffer
containing 5% powdered skimmed milk (w/v),
the membrane was incubated with scFv proteins
at 4 °C for 16 h. The scFv proteins were
detected by anti-c-myc monoclonal antibody,
followed by anti-mouse 19G conjugated to
alkaline phosphatase (Sigma, USA). The target
proteins were finally revealed by adding
substrate 5-bromo-4-chloro-3-indolyl phosphate
(BCIP) and nitro blue tetrazolium (NBT)
(Sigma, Deisenhofen, Germany).

Endonuclease digestion of scFv and Sequence
analysis
ELISA positive clones were PCR amplified using
pHEN (sense: 5-GCCGCTGGATTGTTATTAC
CTCT-3 and antisense: 5-AGAGAGAGATAGT
TTGTAGAGA-3) primers to amplify a 950 bp
fragment of scFv antibody coding sequence.
Thermal cycling was carried out with an initial
denaturation step at 94 °C for 5 min, followed by
35 cycles of 94 °C: 1 min, 54 °C: 1 min, 72 °C: 1
min, and a final extension step at 72 °C for 10 min.
The amplicons were digested with BstNI
(Fermentas, Lithuania) and analyzed on 2% (wi/v)
agarose gel electrophoresis.

pHEN primers used for sequence analysis
and sequence alignments with the human
germline gene were done using IMGT/V-
QUEST (http://www.imgt.org).

Production and purification of scFvs

The E. coli HB2151 was cultured in 2 x YT at
37 °C. At ODgoo = 0.7 - 0.8 was induced with 1
mM IPTG for 16 h at 30 °C. The cells were
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harvested by centrifugation (5000 x g/ 20 min
/ 4 °C). The pellet was incubated with 0.05
volume of 50 mM Tris-HCI buffer containing
30% sucrose and 1 mM EDTA (pH = 8) for 5
min at 0 °C. Extraction of scFvs was carried
out using 0.05 volume of 5 mM MgSO, for 45
min at 0 °C. scFvs were purified via
immobilized metal ion affinity
chromatography (Qiagen, Hilden, Germany).
Purified protein was separated on SDS-PAGE
(Surendran et al., 2015).

Homology modeling and molecular docking
I-TASSER server service (https://zhanglab
.ccmb.med.umich.edu/I-TASSER/) was used to
generate 3D models of recombinant pthA and
scFvG8. The models were refined by
ModRefiner (http://zhanglab.ccmb.med.umich.
edu/ModRefiner/).  HEX  (version 6.0,
http://hex.loria.fr/) was used to investigate the
mode of interaction between the recombinant
pthA and scFvG8 refined models. The possible
interactions of the structural models were
analyzed and visualized using Pymol software
version 1.5.0.1 (http://pymol.findmysoft.com).
The final model was selected based on the
largest cluster size and minimal local energy.
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Results

Screening of the library by affinity selection
Tomlinson | scFv library was used for 3 rounds
of biopanning with 10% cfu of phages per
round. The panning process was performed by
coating of an immunotube with the recombinant
pthA protein. After each round of panning, the
ability of eluted phages to detect antigen were
tested by indirect ELISA. Eluted phages with
affinity towards pthA were increased in
following rounds of panning, while BSA
remained unchanged (Supplementary Fig. 2).
Binding of monoclonal phages to recombinant
pthA protein was about 50% (Fig. 1A).

Isolation of pthA-binding scFv fragments
Eluted monoclonal phages were used to infect
HB2151. Binding activities of the phages were
checked against pthA by ELISA that
demonstrated 25% positive reaction. ELISA
values at 405 nm were at least twice greater
than that of the negative control (Fig. 1B).
Among the positive clones, 5 samples, A12, B8,
C1, H8 and G8, had the highest signals. Two
clones C8 and D5 with smaller absorption were
considered as negative control.

BPTHA
BBSA
Blinfected sap

Bhealthy sap

H8 8 D5

Figure 2 Detection of Xcc-infected plant samples via indirect ELISA with scFvs antibodies (G8, B8, Al2, C8
and D5) developed against pthA determined by absorbance at 405 nm. Bovine serum albumin (BSA), purified
recombinant pthA, proteins from infected and healthy lime plants were used as the samples. C8 and D5 were

used as the negative control.
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Detection of Xcc-infected plant samples
with pthA-specific antibody was checked
using indirect ELISA. The results
demonstrated that the 5 antibodies strongly
reacted with the pthA in infected samples.
However, no significant reaction was detected
in extracts from the healthy plants as negative
control (Fig. 2).

Immunoblot analysis

Western analysis was carried out to assess the
specificity of the scFvs antibody against pthA.
The results demonstrated that all 5 scFvs
strongly reacted with recombinant pthA and
revealed a single protein band at the expected
size of 30 kDa; indicating a specific recognition
(Supplementary Fig. 3).
Characterization and purification  of
monoclonal pthA-binding scFv

The variations within the scFv encoding
sequences were revealed using fingerprint
analysis. The restriction enzyme analysis was
performed using BstNI. The results showed a
similar restriction pattern for all scFv
fragments (data not shown). The isolated
plasmids from positive clones were used for
sequence analysis using specific primers for
pHEN vector. The results indicated that all
the positive clones selected in monoclonal
ELISA contained the same sequence, and
therefore named pthA-scFvG8.

The pthA-scFvG8 was purified by IMAC and

separated on SDS-PAGE. Proteins were
transferred to PVDF and revealed that the
molecular weight of scFv is ~30 kDa

(Supplementary Fig. 4).

Sequencing analysis of scFv sequences
Plasmid extraction carried out from each
colony with positive result in ELISA
experiment and sequence analyses were
performed by pHEN specific primers.
Sequences were translated and aligned
together and with the available sequences in
IMGT database (http://www.imgt.org). The
amino acid sequences of scFvG8 with the
complementarity determining regions (CDRS)
and framework regions (FRs) are shown in
Fig. 3.

Homology model building and molecular
docking

The estimated accuracy of the modeled pthA
and scFvG8 are shown in Supplementary Table
1. The structure with lesser energy was chosen
for further analysis (Fig. 4A). Quality
evaluation of the modeled structure of scFvG8
was performed using Ramachandran plot; 91.7
of the residues were placed into the
combination of favored and allowed categories
(Fig. 4B). These results showed that the scFv
model was suitable for the molecular docking
study.

MAEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSYIGASGNATSYADSVKGGFTISRDNSKN

start
codon

CDR-H1

CDR-H2

TLYLOMNSLRAEDTAVYYCAKDCATFDYWGQGTLVTVSSGGGGSGGGGSGGGGSTDIOMTQSPSSLSASVGDRVTITCR

CDR-H3

Linker

ASQSISSYLNWYQQKPGKAPKLLIYDASDLOSGVPSRFSGSGSGTDFTLTISSLQPEDFAAYYCQQSTSKPSTFGQGTKVEIK

CDR-L1 CDR-L2

RAAAHHHHHHGAAEQKLISEEDLNGAA*
His-Tag ¢-Myc Tag Stop
codon

CDR-L3

Figure 3 Deduced amino acid sequence of scFvG8 antibody. VH and VL domains are linked with a linker; the
CDRs of the scFv, His-tag and c-Myc tag sections are indicated.
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Psi (degrees)

Phi [degrees)

Figure 4 Three-dimensional homology model of scFv. (A) Three dimensional model of scFvG8. (B)
Ramachandran plot of the scFvG8 model.

Table 1 Estimated accuracy of the pthA and anti- Hex was used to visually evaluate the
pthA scFvG8 models. interaction of the scFvG8 with pthA that
Protein Name  C-Score  TM-Score  RMSD (A) allows highly efficient modeling of full

peptide flexibility and significant flexibility
of a protein receptor. The pthA and BSA (as
negative control, PDB: 4f5s) 3D models were

anti-pthA scFv  0.13 0.73+0.11 5736
pthA -3.06 0.37+0.13 13.0+4.2
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docked onto scFvG8 model. In the case of
pthA-scFvG8, the suggested model with the
lowest energy docking (among 30 models)
was selected (Fig. 5A). According to the
docking outputs, the binding energy of
scFvG8 was estimated —784 kcal/mol when
bounded to pthA. This is approximately 2-
fold stronger than that of BSA-scFvGS8 (—419
kcal/mol). These results are in agreement with
the ELISA experiments.

Fig. 5B provides details of the interaction
between the two partners, which reveal the
binding pthA protein to the gap between VL and
VH domains of scFv. Furthermore, the hydrogen
bond interaction analyses revealed that the
complex was stabilized by 11 van der Waals (Ala
103, Tyr 166, Ala 59, Tyr 183, Ala 55, Tyr 52,
Asp 101, Ala 55, Ser 225, Tyr 166, Cys 102) and
two intermolecular hydrogen bonds (Ala 103 and
Ser 56) (Fig. 5B, Supplementary Table 2).

Figure 5 Three-dimensional binding of scFvgG8 to pthA. (A) 3D binding poses of pthA (blue) and scFv (green).
(B) Intermolecular interaction analyses of the scFv with pthA. The hydrogen bonds involved in the interactions

with the scFv are shown.
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Table 2 Residues of the pthA bound to the residues of
the anti- pthA scFv. Amino acid residues involved in
the hydrogen bonds with the scFv are presented.

Anti pthA amino acid pthA amino acid

103: Ala 181: Arg
56: Ser 195: Asp
Discussion

The effector protein, pthA, through type IlI
secretion system (T3SS) are being injected into
the host cell cytoplasm, that later is transported
into the nucleus with the help of importins o
and P to cause disease (Dalio et al., 2017;
Gochez et al., 2018). Therefore, if pthA as a
prompt candidate could be suppressed, then the
disease onset is expected to be hampered as we
have seen in our study (Cervera et al., 2010).
Here, we prepared a monoclonal antibody via
phage display technology against pthA
recombinant protein. The use of phage-display
technology allows the isolation of peptides such
as Fab and scFv with specific binding
characteristics from a library of random short
amino acid sequences (McCafferty et al., 1990).
A scFv contains six specific zones, which are
knowns as complementary determining regions
(CDR): CDR L1-L3, and CDR H1-H3 (Elgert,
2009). It is also known that all six CDRs of the
antibody may interact with the antigen (Kunik
etal., 2012).

Here, Tomlinson | naive scFv phage
libraries were applied for selection of specific
monoclonal antibody against pthA protein of
Xcc. The results of three rounds of biopanning
of library demonstrated a very strong
enrichment for isolated phage against pthA.
RFLP showed a similar restriction pattern for
all scFv fragments, and therefore the
monoclonal antibody of all 5 samples were
renamed to pthA-scFG8.

The IMGT/V-QUEST analysis of V,,and V|

chains of scFvG8 antibody are shown in Figure
3. A total of six CDRs (three in each chain) are
identified. I-TASSER server service (Zhang,
2008) was used to generate 3D models of
recombinant pthA and scFvG8. The accuracy of
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the 3D models of recombinant pthA and
scFvG8 was evaluated by the Ramachandran
plot analysis method, which showed 91.7 of the
residues were placed into the combination of
favored and allowed categories, demonstrating
that the bond lengths, bond angles, and dihedral
angles of the entire molecule are reasonable.
Furthermore, docking results of scFv-pthA
showed that the binding domain was mainly
formed by two intermolecular hydrogen bonds.

The study demonstrates for the first time that
phage display can be used to generate antibody
fragments that ~ specifically recognize Xcc-
infected plant. This research could be the basis
for the development of plantibodies against Xcc.
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