Mutual effects of seed-borne bacterial pathogens, Xanthomonas phaseoli pv. phaseoli and Curtobacterium flaccumfaciens pv. flaccumfaciens in co-infected bean seeds

Volume 14, Issue 1
February 2025
Pages 45-60

Document Type : Original Research

Authors

1 Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Seed and Plant Certification and Registration Institute. Agricultural Research, Education and Extension Organization (AREEO). Tehran, Iran.

Abstract
Most plant pathology research has focused on single-host–single pathogen interactions. Here, are the consequences of co-infection of bean seeds with two important seed-borne pathogens, Xanthomonas phaseoli pv. phaseoli (Xpp) and Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff) were investigated in terms of disease severity and bacterial population dynamics. Cff and Xpp isolates were collected from infected bean seeds and were identified by PCR with specific primers. Some physiological, pathogenicity, and antagonistic traits of Cff and Xpp were compared. These pathogens exhibited different characteristics, such as the production of extracellular compounds, including indole acetic acid, biofilm formation, and motility which can potentially affect each other and host plants. The results revealed that simultaneous infection of bean seeds with two pathogens increased the area under disease progress curve (AUDPC) by 1.71 and 2.38 times compared to a single infection of those with Xpp and Cff, respectively. Pathogen populations in stems and leaves were different under co-infection and single conditions. The data exhibited that the ascending Xpp population in the leaves developed from bean seeds co-infected by Cff and Xpp resulted in a descending Cff population. Xpp isolate displayed greater motility, colonized the plant earlier than Cff, and accelerated disease onset. More biofilm production, confirmed in both pathogens, under co-infection conditions caused earlier plant death via water movement restriction. Our results substantiated that the higher pathogenicity abilities of Xpp played a more critical role in the disease progression in plants developed from bean seeds co-infected by Cff and Xpp. This study provides evidence for the co-occurrence of Xpp and Cff in nature, highlighting the importance of co-infection in common bacterial blight (CBB) and bacterial wilt (BW) disease dynamics.


Keywords

Subjects
Abdullah, A. S., Moffat, C. S., Lopez-Ruiz, F. J., Gibberd, M. R., Hamblin, J. and Zerihun. A. 2017. Host–multi-pathogen warfare: pathogen interactions in co-infected plants. Front. Plant Sci., 8: 1806.
Afkhamifar, A., Moslemkhani, C., Hasanzadeh, N. and Razmi, J. 2023. Interactions of seed-borne bacterial pathogens Xanthomonas translucens and Pseudomonas syringae pv syringae on wheat. J. Plant Pathol., 1-9.
Afzal, M., Khan, S., Iqbal, S., Mirza, M.S. and Khan, Q.M. 2013. Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of diesel contaminated soil. Int. biodeterior. Biodegrade., 85:331-336.
Aggour, A.R., Coyne, D.P., Vidaver, A.K. and Eskridge, K.M. 1989. Transmission of the common blight pathogen in bean seed. J Am Soc Hortic Sci., 114: 1002-1008
Ahmad, E., Sharma, P.K. and Khan, M.S. 2022. IAA biosynthesis in bacteria and its role in plant-microbe interaction for drought stress management. In Plant Stress Mitigators: Action and Application (pp. 235-258). Singapore: Springer Nature Singapore.
Audy, P., Laroche, A., Saindon, G., Huang, H.C. and Gilbertson, R.L. 1994. Detection of the bean common blight bacteria, Xanthomonas campestris pv. phaseoli and X.c. phaseoli var. fuscans, using the Polymerase Chain Reaction. Mol Plant Pathol., 84:1185-1192.
Basson, A., Flemming, L.A. and Chenia, H.Y. 2008. Evaluation of adherence, hydrophobicity, aggregation, and biofilm development of Flavobacterium johnsoniae-like isolates. Microb Ecol., 55(1): 1-14.
Bastas, K.K. and Sahin, F. 2017. Evaluation of seedborne bacterial pathogens on common bean cultivars grown in central Anatolia region, Turkey. Eur. J. Plant Pathol., 147: 239-253.
Belete, T. and Bastas, K.K. 2017. Common bacterial blight (Xanthomonas axonopodis pv. phaseoli) of beans with special focus on Ethiopian condition. J Plant Pathol Microbiol., 8(2).
Bent, E., Tuzun, S., Chanway, C.P. and Enebak, S. 2001. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can. J. Microbiol 47(9): 793-800.
Benítez, M.S., Hersh, M.H., Vilgalys, R. and Clark, J.S. 2013. Pathogen regulation of plant diversity via effective specialization. Trends Ecol Evol., 28:705–711.
Bianchini, A., Maringoni, A.C. and Carneiro, S.M.P.G. 2005. Doenças do feijoeiro (Phaseolus vulgaris L.). In Kimati H, Amorim L, Rezende JAM, Bergamin Filho A and Camargo LEA. Manual de fitopatologia. 2nd edn, Editora Ceres, São Paulo, 333-349.
Borkar, S.G. 2017. Laboratory techniques in plant bacteriology. CRC Press.
Camara, R. C., Vigo, S. C. and Maringoni, A. C. 2009. Plant to seed transmission of Curtobacterium flaccumfaciens pv. flaccumfaciens in a dry bean cultivar. J. Plant Pathol., 91(3): 549–554.
Castagno, L.N., Estrella, M.J., Sannazzaro, A.I., Grassano, A.E. and Ruiz, O.A., 2011. Phosphate‐solubilization mechanism and in vitro plant growth promotion activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado River Basin (Argentina). J. Appl. Microbiol., 110(5): 1151-1165.
Chen, G., Khojasteh, M., Taheri-Dehkordi, A., Taghavi, S.M., Rahimi, T. and Osdaghi, E., 2021. Complete genome sequencing provides novel insight into the virulence repertories and phylogenetic position of dry beans pathogen Curtobacterium flaccumfaciens pv. flaccumfaciens. Phytopathol., 111(2): 268-280.
Chen, N.W., Serres-Giardi, L., Ruh, M., Briand, M., Bonneau, S., Darrasse, A., Barbe, V., Gagnevin, L., Koebnik, R. and Jacques, M.A., 2018. Horizontal gene transfer plays a major role in the pathological convergence of Xanthomonas lineages on common bean. BMC genome., 19:1-20.
Chepsergon, J. and Moleleki, L. N. 2023. Rhizosphere bacterial interactions and impact on plant health. Curr. Opin. Microbiol., 73:102297.
Coyte, K.Z., Schluter, J. and Foster, K.R., 2015. The ecology of the microbiome: Networks, competition, and stability. Sci., 350(6261):663–6.
Danhorn, T. and Fuqua, C. 2007. Biofilm formation by plant-associated bacteria. Annu. Rev. Microbiol., 61:401–22
Darsonval, A., Darrasse, A., Meyer, D., Demarty, M., Durand, K., Bureau, C., Manceau, C. and Jacques, M.A., 2008. The type III secretion system of Xanthomonas fuscans subsp. fuscans is involved in the phyllosphere colonization process and in transmission to seeds of susceptible beans. Appl. Environ. Microbiol., 74(9): 2669-2678.
de Paiva, B.A.R., Wendland, A., Rossato, M. and Velloso Ferreira, M.A.D.S., 2022. Virulence and type III effector diversities of Xanthomonas citri pv. fuscans and X. phaseoli pv. phaseoli in Brazil. J Phytopathol., 170(1): 1-14.
Dutt, A., Andrivon, D. and Le May, C., 2022. Multi‐infections, competitive interactions, and pathogen coexistence. Plant Pathol., 71(1): 5-22.
EPPO, 2011. Curtobacterium flaccumfaciens pv. flaccumfaciens. EPPO Bull., 41:320.
Evseev, P., Lukianova, A., Tarakanov, R., Tokmakova, A., Shneider, M., Ignatov, A. and Miroshnikov, K., 2022. Curtobacterium spp. and Curtobacterium flaccumfaciens: Phylogeny, genomics-based taxonomy, pathogenicity, and diagnostics. Curr Issues Mol Biol., 44(2): 889-927.
Fatmi, M., Walcott, R.R. and Schaad, N.W., 2017. Detection of plant-pathogenic bacteria in seed and other planting material (No. Ed. 2). St. Paul: APS-Press.
Flemming, H. C. and Wingender, J. 2010. The biofilm matrix. Nat. Rev. Microbiol., 8: 623–33.
Gilbertson, R.L., O’Leary, M., Agarkova, I.V. and Vidaver, A.K., 2017. Detection of Xanthomonas campestris pv. phaseoli and X. fuscans subsp. fuscans in Common Bean Seeds. In: Detection of Plant-Pathogenic Bacteria in Seed and Other Planting Material, 3rd edn. The American Phytopathological Society, pp. 63-71.
Gonçalves, R.M., Schipanski, C.A., Koguishi, L., Soman, J.M., Sakate, R.K., Júnior, T.A.S. and Maringoni, A.C., 2017. Alternative hosts of Curtobacterium flaccumfaciens pv. flaccumfaciens, causal agent of bean bacterial wilt. Eur. J. Plant Pathol., 148: 357-365.
Granato, E.T., Meiller-Legrand, T.A. and Foster, K.R., 2019. The evolution and ecology of bacterial warfare. Curr Biol., 29:R521-R537
Grimault, V., Olivier, V., Rolland, M., Darrasse, A. and Jacques, M.A., 2014. Detection of Xanthomonas axonopodis pv. phaseoli and Xanthomonas axonopodis pv. phaseoli var. fuscans on Phaseolus vulgaris (bean). International rules for seed testing annexe to chapter 7: Seed health testing methods 7-021.
Gudero, G. and Terefe, H. 2018. Distribution and association of factors infuencing bean common bacterial blight (Xanthomonas axonopodis pv. phaseoli) epidemics in Southern Ethiopia. Arch Phytopathol Plant Prot., 51(19–20):1066–1089
Guttenplan, S. B. and Kearns, D. B. 2013. Regulation of flagellar motility during biofilm formation.
FEMS Microbiol. Rev., 37: 849–71.
Harding, M., Nadworny, P., Buziak, B., Omar, A., Daniels, G. and Feng, J., 2019. Improved methods for treatment of phytopathogenic biofilms: metallic compounds as anti-bacterial coatings and fungicide tank-mix partners. Molecules., 24: 2312
He, Y. and Munkvold, G. P. 2013. Comparison of seed transmission and survival of Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans in common bean seeds. Plant Health Prog., 14(1): 41.
Huang, H.C., Erickson, R.S., Balasubramanian, P.M., Hsieh, T.F. and Conner, R.L., 2009. Resurgence of bacterial wilt of common bean in North America. Can. J. Plant Pathol., 31: 290–300.
Ishimaru, C., Eskridge, K.M. and Vidaver, A.K., 1991. Distribution analyses of naturally occurring epiphytic populations of Xanthomonas campestris pv. phaseoli on dry beans. Phytopathol., 81(3): 262-268.
Júnior, T.S., Negrao, D.R., Itako, A.T. and Maringoni, A.C., 2012. Pathogenicity of Curtobacterium flaccumfaciens pv. flaccumfaciens to several plant species. J. Plant Pathol., 427-430.
Klement, Z., Farkas, G.L. and Lovrekovich, L., 1964. Hypersensitive reaction induced by phytopathogenic bacteria in the tobacco leaf. Phytopathol 54: 474–477
Kůdela, V., Krejzar, V. and PáNKoVá, I. 2010. Pseudomonas corrugata and Pseudomonas marginalis associated with the collapse of tomato plants in rockwool slab hydroponic culture. Plant Prot. Sci., 46(1): 1-11.
Lamichhane, J. R. and Venturi, V. 2015. Synergisms between microbial pathogens in plant disease complexes: a growing trend. Front. Plant Sci., 06
Li, Q. and Sun, L. 2021. Genomic Analysis of Curtobacterium Flaccumfaciens Reveals the Differences Between Pathogenic and Nonpathogenic Strains. DOI: https://doi.org/10.21203/rs.3.rs-335330/v1
Lopes, M. J. D. S., Dias-Filho, M. B. and Gurgel, E. S. C. 2021. Successful plant growth-promoting microbes: inoculation methods and abiotic factors. Front. sustain. food syst., 5: 606454.
Majumdar, S.U.K.A.N.T.A. and Chakraborty, U.S.H.A., 2017. Optimization of protease production from plant growth promoting Bacillus amyloliquefaciens showing antagonistic activity against phytopathogens. Int. J. Pharm. Bio. Sci., 8(2): 635-642.
Marchetto, K. M. and Power, A. G. 2018. Coinfection timing drives host population dynamics through changes in virulence. Am Nat., 191:173–183.
Maringoni, A.C., Ishiszuka, M.S., Silva, A.P.D., Soman, J.M., Moura, M.F., Santos, R.L.D., Silva, T.A.F.D., Chiorato, A.F., Carbonell, S.A.M. and Fonseca, N.D.S., 2015. Reaction and colonization of common bean genotypes by Curtobacterium flaccumfaciens pv. flaccumfaciens. Crop. Breed. Appl. Biotechnol., 15:87- 93.
Moretti, C., Rezzonico, F., Orfei, B., Cortese, C., Moreno‐Pérez, A., van den Burg, H. A., ... and Buonaurio, R. 2021. Synergistic interaction between the type III secretion system of the endophytic bacterium Pantoea agglomerans DAPP‐PG 734 and the virulence of the causal agent of olive knot Pseudomonas savastanoi pv. savastanoi DAPP‐PG 722. Mol. Plant Pathol., 22(10): 1209-1225.
Nagórska, K., Hinc, K., Strauch, M.A. and Obuchowski, M., 2008. Influence of the sigma B stress factor and yxaB, the gene for a putative exopolysaccharide synthase under sigma B control, on biofilm formation. J. Bacteriol., 190: 3546-3556.
O'May, C. and Tufenkji, N. 2011. The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials. Appl. Environ. Microbiol., 77(9):3061-3067.
Osdaghi, E., Taghavi, S.M., Fazliarab, A., Elahifard, E. and Lamichhane, J.R., 2015. Characterization, geographic distribution and host range of Curtobacterium flaccumfaciens: an emerging bacterial pathogen in Iran. Crop Prot., 78:185-192.
Osdaghi, E., Taghavi, S.M., Hamzehzarghani, H., Fazliarab, A., Harveson, R.M., Tegli, S. and Lamichhane, J.R., 2018. Epiphytic Curtobacterium flaccumfaciens strains isolated from symptomless solanaceous vegetables are pathogenic on leguminous but not on solanaceous plants. Plant Pathol., 67:388-398.
Osdaghi, E., Young, A.J. and Harveson, R.M., 2020. Bacterial wilt of dry beans caused by Curtobacterium flaccumfaciens pv. flaccumfaciens: a new threat from an old enemy. Mol. Plant Pathol., 21: 605-621
Osdaghi, E. and Zademohamad, A. A. 2016. Phaseolus lunatus, a New Host of Xanthomonas axonopodis pv. phaseoli in Iran. J Phytopathol., 164(1): 56-60.
Paravar, A., Piri, R., Balouchi, H. and Ma, Y., 2023. Microbial seed coating: an attractive tool for sustainable agriculture. Biotechnol., Rep e00781.
Puia, J.D., Ferreira, M.G.D.B., Hoshino, A.T., Borsato, L.C., Canteri, M.G. and Vigo, S.C., 2021. Occurrence of Curtobacterium flaccumfaciens pv. flaccumfaciens in the state of Paraná and its pathogenicity in beans. Eur. J. Plant Pathol., 159(3): 627-636.
Rohmer, L., Hocquet, D. and Miller, S.I., 2011. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol., 19: 341–348.
Sadhukhan, S., Jacques, M.A. and Potnis, N., 2024. Influence of co-occurring weakly pathogenic bacterial species on bacterial spot disease dynamics on tomato. bioRxiv 2023-04.
Sammer, U. F. and Reiher, K. 2012. Curtobacterium flaccumfaciens pv. flaccumfaciens on soybean in Germany a threat for farming. J Phytopathol., 160: 314–316.
Schaad, N. W., Jones , J. B. and Chun, W. 2001. Laboratory guide for the identification of plant pathogenic bacteria 3rd edn. American Phytopathological Society (APS Press).
Sena‐Vélez, M., Redondo, C., Gell, I., Ferragud, E., Johnson, E., Graham, J.H. and Cubero, J., 2015. Biofilm formation and motility of Xanthomonas strains with different citrus host range. Plant Pathol., 64(4): 767-775.
Soares, R.M., Fantinato, G.G., Ferreira, E.G. and Marcelino-Guimarães, F.C., 2018. Plant-to-seed transmission of Curtobacterium flaccumfaciens pv. flaccumfaciens on soybean. Trop. Plant Pathol., 43: 376-379.
Spaepen, S., Vanderleyden, J. and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev., 31(4): 425-448.
Stromberg, K. D., Kinkel, L. L., and Leonard, K. J. 2000. Relationship between phyllosphere population sizes of Xanthomonas translucens pv. translucens and bacterial leaf streak severity on wheat seedlings. Phytopathol., 89(2):131-5.
Tegli, S. Cerboneschi, M. and Vidaver, A. K. 2017. Detection of Curtobacterium flaccumfaciens pv. flaccumfaciens in bean seeds and in seeds of other Leguminosae crops. In: Detection of plant-pathogenic bacteria in seed and other planting material. APS Publications. pp 77-83.
Tegli, S. Sereni, A. and Surico, G. 2002. PCR‐based assay for the detection of Curtobacterium flaccumfaciens pv. flaccumfaciens in bean seeds. Lett. Appl. Microbiol., 35(4): 331-337.
Thapa, S.P., Davis, E.W., Lyu, Q., Weisberg, A.J., Stevens, D.M., Clarke, C.R., Coaker, G. and Chang, J.H., 2019. The evolution, ecology, and mechanisms of infection by gram-positive, plant- ssociated bacteria. Annu. Rev. Phytopathol 57:341-365.
Thebault, E. and Fontaine, C. 2010. Stability of ecological communities and the architecture of mutualistic and trophic networks. Sci., 329(5993):853–6. doi: 10.1126/science.1188321 PMID: 20705861 2.
Theodoro, G. F. 2004. Reação de cultivares locais de feijão a Xanthomonas axonopodis pv. phaseoli, em condições de campo. Rev. Bras. Agrociênc., 10: 373-375.
Thomas, W. D. and Graham, R. W. 1952. Bacteria in apparently healthy pinto beans. Phytopathol., 42: 214–215.
Tollenaere, C., Susi, H. and Laine, A. L. 2016. Evolutionary and epidemiological implications of multiple infection in plants. Trends Plant Sci., 21(1): 80-90.
Tom, R. A. and Crisan, E. V. 1975. Assay for lipolytic and proteolytic activity using marine substrates. Appl. Microbiol ., 29(2): 205-210.
Tambong,. J. T., Xu, R.., Gerdis, S., Daniels, G. C., Chabot, D., Hubbard, K., and Harding, M. W. 2022. Corrigendum: Molecular analysis of bacterial isolates from necrotic wheat leaf lesions caused by Xanthomonas translucens, and description of three putative novel species, Sphingomonas albertensis sp. nov., Pseudomonas triticumensis sp. nov. and Pseudomonas foliumensis sp. nov. Front. Microbiol., 1696.
Toussaint, V., Benoit, D. L. and Carisse, O. 2012. Potential of weed species to serve as a reservoir for Xanthomonas campestris pv. vitians, the causal agent of bacterial leaf spot of lettuce. Crop Prot., 41: 64-70.
Vaumourin, E., Vourc’h, G., Gasqui, P. and Vayssier-Taussat, M. 2015. The importance of multiparasitism: examining theconsequences of co-infections for human and animal health. Parasit. Vectors., 8: 545. doi: 10.1186/s13071-015-1167-9.
West, S.A., Griffin, A.S., Gardner, A. and Diggle, S.P., 2006. Social evolution theory for microorganisms. Nat. Rev. Microbiol., 4:597–607. doi: 10.1038/ nrmicro1461
Yun, M.H., Torres, P.S., Oirdi, M.E., Rigano, L.A., Gonzalez-Lamothe, R., Marano, M.R., Castagnaro, A.P., Dankert, M.A., Bouarab, K. and Vojnov, A.A., 2006. Xanthan induces plant susceptibility by suppressing callose deposition. Plant Physiol., 141(1): 178-187.
Zamani, Z., Bahar, M., Jacques, M.A., Lak, M.R. and Akhavan, A., 2011. Genetic diversity of the common bacterial blight pathogen of bean, Xanthomonas axonopodis pv. phaseoli, in Iran revealed by rep-PCR and PCR–RFLP analyses. World J Microbiol Biotechnol., 27: 2371-2378.