Effect of the foliar fertilizers application on Grapevine trunk diseases

Volume 13, Issue 4
December 2024
Pages 385-397

Document Type : Original Research

Authors

1 Department of Plant Protection, Faculty of Agronomic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.

2 Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.

Abstract
Grape trunk diseases are critical problems for grapes from the time of planting to the harvest stage. Grapes are susceptible to 29 fungal diseases due to their perennial woody trunk, so identifying and managing them is crucial. Among the methods of controlling these diseases, feeding with mineral fertilizers to reduce leaf symptoms resulting from the toxic secretions of fungi living in the woody part of the tree is of great importance. To manage these diseases, a mixture of fertilizers including calcium chloride CaCl2, 466 g, magnesium nitrate Mg(NO3)2, 403 g, seaweed extract (75 ml) and sterile distilled water 466 ml per liter of foliar spraying on the selected treatments in Sohrabi’s garden were used once every 20 days. Guaiacol peroxidase, catalase and leaf area index were measured in Sohrabi’s garden during 2017 and 2018 and were compared with the control. In the treatments sprayed with the fertilizers, the average amount of guaiacol peroxidase enzyme was 12.72 µl compared to the control (10.6 µl) and the average amount of catalase enzyme was 83.68 µl compared to the control (31.85 µl). The average size of the leaf area in the foliar treatments in Sohrabi’s garden was 11564 mm2, compared to the control that was 4959 mm2. The severity of the disease in the sprayed treatments (19.95 %) was lower than the control (56.6 %). These results are due to the increase in the leaf surface, which increases the amount of photosynthesis, and the increase in guaiacol peroxidase and catalase, which reduce the oxidative stress resulting from fungal secretions, which resulted in decreasing symptoms in foliar treatments.

Keywords

Subjects
Aebi, H. 1984. Catalase in vitro. Methods in Enzymology, 105: 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3
Asada, K. 1992. Ascorbate peroxidase hydrogen peroxide scavenging enzyme in plants. Physiologica Plantarum, 85: 235–241.
Baránek, M., Armengol, J., Holleinová, V., Peˇcenka, J., Calzarano, F., Peˇnázová, E., Vachun, M. and Eichmeier, A. 2018. Incidence of symptoms and fungal pathogens associated with grapevine trunk diseases in Czech vineyards: First example from a north-eastern European grape-growing region. Phytopathologia Mediterranea,, 57, 3, 449−458. DOI: 10.14601/Phytopathol_Mediterr-22460
Beers, R. F. and Seizer, I. W. 1952. Spectrophotometric Method for Measuring the Breakdown of Hydrogen Peroxide by Catalase. Journal of Biological Chemistry, Volume 195, Issue 1, 1 March 1952, Pages 133-140. https://doi.org/10.1016/S0021-9258(19)50881-X
Bertsch, C. M., Ramírez‐Suero, M., Magnin‐Robert, P., Larignon, J., Chong, E., Abou‐Mansour, A., Spagnolo, C. and Clèment Fontaine, F. 2013. Grapevine trunk diseases: complex & still poorly understood. Plant Pathology, Volume62, Issue2. https://doi.org/10.1111/j.1365-3059.2012.02674.x.
Bian, S. and Jiang, Y. 2009. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of kentucky bluegrass in response to drought stress and recovery. Science Horticulturae, Volume 120, Issue 2, 2 April 2009, Pages 264-270. https://doi.org/10.1016/j.scienta.2008.10.014
Blanco, F. F. and Folegatti, M.V. 2005. Estimation of leaf area for greenhouse cucumber by linear measurements under salinity and grafting. Scientia Agricola, 62(4): 305-309. DOI:10.1590/S0103-90162005000400001
Caldas, LS., Bravo, C., Piccolo, H., Faria, C., 1992. Measurement of leaf area with a hand- scanner linked to a microcomputer. R. Bras. Fisiologia Vegetal. 4, 17- 20.
Calzarano, F. and Di Marco, S. 2007. Wood discoloration and decay in grapevines with Esca proper and their relationship with foliar symptoms. Phytopathologia Mediterranea, vol. 46, no. 1, pp. 96–101. DOI: https://doi.org/10.36253/phyto-5208
Calzarano, F., Amalfitano, C., Seghetti, L. and Cozzolino, V. 2009. Nutritional status of vines affected with Esca proper. Phytopathologia Mediterranea, Vol. 48 No. 1, pp. 20–31. DOI: https://doi.org/10.14601/Phytopathol_Mediterr-2872
Calzarano, F., Cichelli, A. and Odoardi, M. 2001. Preliminary evaluation of variations in composition induced by Esca on cv. Trebbiano d’Abruzzo grapes and wines. Phytopathologia Mediterranea, 40(3), pp.443-448. DOI:10.14601/Phytopathol_Mediterr-1633
Calzarano, F., D,’Agostino, V., Pepe, A., Osti, F., Della Pelle, F., de Rosso, M., Flamini, R. and Di Marco, S. 2016. Patterns of phytoalexins in the grapevine leaf stripe disease (Esca complex)/grapevine pathosystem. Phytopathologia Mediterranea, Vol. 55 No. 3, pp. 410–426. DOI: https://doi.org/10.14601/. Phytopathologia Mediterranea, -18681
Calzarano, F., Di Marco, S., D’Agostino, V., Schiff S.and Mugnai, L. 2014. Grapevine leaf stripe disease symptoms (Esca complex) are reduced by a nutrients and seaweed mixture. Phytopathologia Mediterranea, Vol. 53 No. 3,pp.543-558.
Calzarano, F., Di Marco, S.and Cesari, A. 2004. Benefit of fungicide treatment after trunk renewal of vines with different types of Esca necrosis. Phytopathologia Mediterranea, Vol. 43, No. 1, pp. 116-124. https://www.jstor.org/stable/26456695
Calzarano, F., Osti, F., Baránek, M. and Di Marco, S. 2018. Rainfall and temperature influence expression of foliar symptoms of grapevine leaf stripe disease (Esca complex) in vineyards. Phytopathologia Mediterranea, Vol 57, No 3, pp.488–505. DOI: https://doi.org/10.14601/Phytopathol_Mediterr-24454
Calzarano, F., Osti, F., D’Agostino, V., Pepe, A. and Di Marco, S. 2017a. Mixture of calcium, magnesium and seaweed affects leaf phytoalexin contents and grape ripening on vines with grapevine leaf stripe disease. Phytopathologia Mediterranea, Vol. 56 No. 3, pp. 394–401. DOI: https://doi.org/10.14601/Phytopathol_Mediterr-22023
Calzarano, F., Osti, F., D’Agostino, V., Pepe, A., Della Pelle, F., De Rosso, M., Flamini, R. and Di Marco, S. 2017b. Levels of phytoalexins in vine leaves with different degrees of grapevine leaf stripe disease symptoms (Esca complex of diseases). Phytopathologia Mediterranea, Vol. 56 No. 3 , pp.494–501. DOI: https://doi.org/10.14601/Phytopathol_Mediterr-22055
Calzarano, F., Pagnani, G., Pisante, M., Bellocci, M., Cillo, G., Metruccio, E.G. and Di Marco, S. 2021. Factors Involved on Tiger-Stripe Foliar Symptom Expression of Esca of Grapevine. Plants. 10(6), 1041; https://doi.org/10.3390/plants10061041
Chance, B., Maehly, A. C. 1955. Assay of catalase and peroxidase. Methods in Enzymology, 2, 764-775. http://dx.doi.org/10.1016/S0076-6879(55)02300-8
Colrat, S., Deswarte, C., Latché, A., Klaébe, K., Bouzayen, M., Fallot, J. and Roustan, J.P. 1999. Enzymatic detoxification of eutypine, a toxin from Eutypa lata, by Vitis vinifera cells: Partial purification of an NADPH-dependent aldehyde reductase. Planta, vol. 207, pp.544–550.
Cooper, M., Klonsky, K. M. and De Moura, R. L. 2012. Sample cost to establish a vineyard and produce winegrapes (Cabernet Sauvignon) in the North Coast Region (Napa County). University of California Cooperative Extension. Retrieved 15 January 2017. https://coststudyfiles.ucdavis.edu/uploads/cs_public/23/26/2326336b-eb3e-4cda-a0f4-cca46e84429b/winegrapenc
Creaser, M. L. and Wicks T. J. 2004. Short-term effects of remedial surgery to restore productivity to Eutypa lata infected vines. Phytopathologia Mediterranea, Vol. 43 No. 1, pp.105-107. DOI: https://doi.org/10.14601/Phytopathol_Mediterr-1737
Evidente, A., Sparapano, L., Andolfi, A. and Bruno, G. 2000. Two naphthalenone pentaketides from liquid cultures of Phaeoacremonium aleophilum, a fungus associated with Esca of grapevine. Phytopathologia Mediterranea, Vol. 39 No. 1, pp. 162-168. DOI: https://doi.org/10.14601/Phytopathol_Mediterr-1559
Fontaine, F. D., Gramaje, J., Armengol, R., Smart, Z. A., Nagy, M., Borgo, C., Rego, M. and Corio-Costet, F. 2016. Book. Publisher: ©OIV publications, (Paris, France). Editor: O.I.V. ISBN: 979-10-91799-60-7
Gramaje D., Urbez-Torres, J. R. and Sosnowski, M. R. 2018. Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. Plant Disease. 2018 Jan;102(1):12-39. doi: 10.1094/PDIS-04-17-0512-FE. Epub 2017 Dec 7.
Guerin-Dubrana, L., Labenne, A., Labrousse, J. C., Bastien, S., Rey, P. and Gégout-Petit, A. 2013. Statistical analysis of grapevine mortality associated with Esca or Eutypa dieback foliar expression. Phytopathologia Mediterranea, Vol. 52 No. 2, p. 276–288. DOI: https://doi.org/10.14601/Phytopathol_Mediterr-11602
Halleen, F. and Fourie P. H. 2016. An integrated strategy for the proactive management of grapevine trunk disease pathogen infections in grapevine nurseries. Enology and Viticulture . 37(2):104-114. DOI:10.21548/37-2-825
Heath, M. C. 2000. Hypersensitive response-related death. Plant Molecular Biology, 44(3): pp.321-334. DOI: 10.1023/a:1026592509060
Kühn, A., Zappata, A., Gold, R.E., Zito, R. and Kortekamp, A. 2017. Susceptibility of grape pruning wounds to grapevine trunk diseases and effectiveness of a new BASF wound protectant. Phytopathologia Mediterranea, vol. 56(3), pp.48-50.
Laspina, N.V., Groppa, M. D., Tomaro, M. L. and Benavides, M. P. 2005. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Science, Volume 169(2) , pp. 323-330.
Lecourieux, D., Ranjeva, R. and Pugin, A. 2006. Calcium in plant defence-signalling pathways. New Phytologist. 171(2):249-69. doi: 10.1111/j.1469-8137.2006.01777.x.
Lima, M. R. M., Ferreres, F. and Dias, A. C. P. 2012. Response of Vitis vinifera cell cultures to Phaeomoniella chlamydospora: Changes in phenolic production, oxidative state and expression of defence-related genes. European Journal of Plant Pathology. 132(1):133-146. DOI:10.1007/s10658-011-9857-4
Lizaso, J. I., Batchelor, W. D. and Westgate, M. E. 2003. A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves. Field Crops Research, 80(1). 1-17.
Lorenz, D. H., Eichhorn, K. W., Bleiholder, H., Close, R., Meier, U. and Weber, E. 1995. Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera). Encoding and description of the phenological stages of the grapevine according to the extended BBCH scheme. 100 Growth stages of the grapevine Australian Journal of Grape and Wine Research. 1(2): 100–103. DOI:10.1111/j.1755-0238.1995.tb00085.x
Marschner, P. 2012. Marschner’s mineral nutrition of higher plants. Book. Third Edition. 2012. Academic Press; London, UK pp. 178–189.
Mc Kinney H. H. 1923. Influence of soil, temperature and moisture on infection of wheat seedlings by Helminthosporium sativum. Journal Agricultural Research, Vol. 26, 1923, pp. 195- 217. http://om.ciheam.org/article.php?IDPDF=800231
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Science . 2002 Sep;7(9):405-410. https://doi.org/10.1016/S1360-1385(02)02312-9.
Mugnai, L., Graniti, A.and Surico, G. 1999. Esca (black measles) and brown wood streaking: Two old and elusive diseases of grapevines. Plant Disease, 83(5): 404-418. https://doi.org/10.1094/PDIS.1999.83.5.404
Pacetti, A., Moretti, S., Pinto, C., Compant, S., Farine, S., Bertsch, C. and Mugnai, L. 2021. Trunk Surgery as a Tool to Reduce Foliar Symptoms in Diseases of the Esca Complex and Its Influence on VineWood Microbiota. Journal of Fungi. 2021 Jun 29;7(7):521. doi: 10.3390/jof7070521.
Reis, P., Pierron, R., Larignon, P., Lecomte, P., Abou-Mansour, E., Farine, S., Bertsch, C., Jacques, A., Trotel-Aziz, P., and Rego, C. 2019. Vitis Methods to understand and develop strategies for diagnosis and sustainable control of grapevine trunk diseases. Phytopathology, 109, 916–931. https://doi.org/10.1094/PHYTO-09-18-0349-RVW
Sharma, D., Rawat, I. and Goel, H. G. 2012. Antioxidant and prebiotial of some cucurbits. Research Journal of Medicinal Plant. 6 (7): 500-510.
Shaul, O. 2002. Magnesium transport and function in plants: The tip of the iceberg. BioMetals, Vol. 15, No. 3, 307-321. DOI: 10.1023/A:1016091118585
Shen, W. B., Huang L. Q. and Xu, L. L. 1997. Ascorbate peroxidase in plants. Journal of Zhejiang University-SCIENCE B. 2013 Dec; 14(12): 1110–1120. doi: 10.1631/jzus.B1300105
Sosnowski, M. R., Wicks, T. W. and Scott E. S. 2011b. Control of Eutypa dieback in grapevines using remedial surgery. Phytopathologia Mediterranea, 50:S277-S284.
DOI: https://doi.org/10.14601/Phytopathol_Mediterr-8919
Sparapano, L., Bruno, G. and Graniti A. 1998. Esopolisaccaridi fitotossici sono prodotti in coltura da due specie di Phaeoacremonium associate al complesso del “mal dell’Esca” della vite. Phytopathologia Mediterranea 39(1):16-20. DOI:10.14601/Phytopathol_Mediterr-1539
Surico, G. 2009. Towards a redefinition of the diseases within the Esca complex of grapevine. Phytopathologia Mediterranea, 48(1) , pp.5-10.
Úrbez-Torres, J. R. and Gubler, W. D. 2011. Susceptibility of grapevine pruning wounds to infection by Lasiodiplodia theobromae and Neofusicoccum parvum. Plant Pathology 60(2):261 – 270. DOI:10.1111/j.1365-3059.2010.02381.x
Whiting, E. C., Khan, A. and Guber, W. D. 2001. Effect of temperature and water potential on survival and mycelial growth of Phaeomoniella chlamydospora and Phaeoacremonium spp. Phytopathologia Mediterranea. 51(1). DOI:10.14601/Phytopathol_Mediterr-9499
Yang, T., Groenewald J. Z., Cheewangkoon, R., Jami, F., Abdollahzadeh, J., Lombard, L. and Crous, P. W. 2017. Families, genera and species of Botryosphaeriales. Fungal Biology.121(4):322-346. doi: 10.1016/j.funbio.2016.11.001. Epub 2016 Nov 21.