Alix, A., Cortesero, A.M., Nénon, J.P., Anger, J.P., 2001. Selectivity assessment of chlorfenvinphos reevaluated by including physiological and behavioral effects on an important beneficial insect. Environmental Toxicology and Chemistry 20, 2530–2536. https://doi.org/10.1002/etc.5620201119
Anjitha Alexander, S.V.K. and S.K., 2013. Toxicity of insecticides to the coccinellid predators, Cryptolaemus montrouzieri Mulsant and Scymnus coccivora Ayyar of papaya mealybug, Paracoccus marginatus Williams and Granara De Willink. Journal of Biological Control 27, 18–23. https://doi.org/10.18311/jbc/2013/3452
ASLAM, M., 2007. Comparison of different canola (Brassica napus L.) varieties for resistance against cabbage aphid (Brevicoryne brassicae L.). Agricultural Research 7, 12–13.
Aydoğdu, M., Güner, U., 2013. Effects of 5 different insecticides on mortality of the Leafroller parazitoid Itoplectis maculator (Fabricius, 1775) Özet. Turkish Bulletin of Entomology 2, 243–249.
Bayram, A., Salerno, G., Onofri, A., Conti, E., 2010. Sub-lethal effects of two pyrethroids on biological parameters and behavioral responses to host cues in the egg parasitoid Telenomus busseolae. Biological Control 53, 153–160. https://doi.org/10.1016/j.biocontrol.2009.09.012
Bueno, A. de F., Carvalho, G.A., Santos, A.C. dos, Sosa-Gómez, D.R., Silva, D.M. da, 2017. Pesticide selectivity to natural enemies: challenges and constraints for research and field recommendation. Ciência Rural 47. https://doi.org/10.1590/0103-8478cr20160829
Casas, J., Nisbet, R.M., Swarbrick, S., Murdoch, W.W., 2000a. Eggload dynamics and oviposition rate in a wild population of a parasitic wasp. Journal of Animal Ecology 69, 185–193. https://doi.org/10.1046/j.1365-2656.2000.00376.x
Casas, J., Nisbet, R.M., Swarbrick, S., Murdoch, W.W., 2000b. Eggload dynamics and oviposition rate in a wild population of a parasitic wasp. Journal of Animal Ecology 69, 185–193. https://doi.org/10.1046/j.1365-2656.2000.00376.x
Cloyd, R., 2012. Indirect effects of pesticides on natural enemies, Pesticides - Advances in Chemical and Botanical Pesticides. https://doi.org/10.5772/48649
Cloyd, R.A., Dickinson, A., 2006. Effect of insecticides on mealybug destroyer (Coleoptera: Coccinellidae) and parasitoid Leptomastix dactylopii (Hymenoptera: Encyrtidae), natural enemies of citrus mealybug (Homoptera: Pseudococcidae). Journal of Economic Entomology 99, 1596–1604. https://doi.org/10.1093/jee/99.5.1596
Collier, R., Jukes, A., Daniel, C., Hommes, M., 2016. Ecological selectivity of pesticides and pesticide application methods. Integrated Protection in Field Vegetables IOBC-WPRS Bulletin 118, 94–98.
Cordero, R.J., Bloomquist, J.R., Kuhar, T.P., 2007. Susceptibility of two diamondback moth parasitoids, Diadegma insulare (Cresson) (Hymenoptera; Ichneumonidae) and Oomyzus sokolowskii (Kurdjumov) (Hymenoptera; Eulophidae), to selected commercial insecticides. Biological Control 42, 48–54. https://doi.org/10.1016/j.biocontrol.2007.04.005
Dastjerdi, H.R., Hejazi, M.J., Ganbalani, G.N., Saber, M., 2009. Sublethal effects of some conventional and biorational insecticides on ectoparasitoid, Habrobracon hebetor Say (Hymenoptera: Braconidae). Journal of Entomology 6, 82–89. https://doi.org/10.3923/je.2009.82.89
D’Ávila, V.A., Barbosa, W.F., Guedes, R.N.C., Christopher Cutler, G., 2018. Effects of spinosad, imidacloprid, and lambda-cyhalothrin on survival, parasitism, and reproduction of the aphid parasitoid Aphidius colemani. Journal of Economic Entomology 111, 1096–1103. https://doi.org/10.1093/jee/toy055
Hardy, I.C.W., Alphen, J.J.M. Van, Godfray, H.C.J., 1994. Parasitoids: behavioral and evolutionary ecology. Journal of Animal Ecology 63, 1009. https://doi.org/10.2307/5282
Hewa-Kapuge, S., McDougall, S., Hoffmann, A.A., 2003. Effects of methoxyfenozide, indoxacarb, and other insecticides on the beneficial egg parasitoid Trichogramma nr. brassicae (Hymenoptera: Trichogrammatidae) under laboratory and field conditions. Journal of Economic Entomology 96, 1083–1090. https://doi.org/10.1093/jee/96.4.1083
Kant, R., Minor, M.A., 2017. Parasitoid Diaeretiella rapae (Hymenoptera: Braconidae) adjusts reproductive strategy when competing for hosts. Environal Entomology 46, 521–527. https://doi.org/10.1093/ee/nvx057
Kelm, M., Gadomski, H., Pruszynski, S., 1995. Occurrence and harmfulness of the cabbage aphid, Brevicoryne brassicae (L.) on winter rape (Abst.). XXXV Scientific Meeting of Institute of Plant Protection 35, 101–103.
Liu, Y.Q., Liu, B., Ali, A., Luo, S.P., Lu, Y.H., Liang, G.M., 2015. Insecticide toxicity to Adelphocoris lineolatus (Hemiptera: Miridae) and its nymphal parasitoid Peristenus spretus (Hymenoptera: Braconidae). Journal of Economic Entomology 108, 1779–1785. https://doi.org/10.1093/jee/tov144
M. Sampathkumar, S.V.K., 2013. Research Article Risk Assessment of Trichogramma chilonis (Fab.) to new molecules evaluated against spotted bollworm, Earias vittella Ishii in cotton. Journal of Biological Control 27, 272–277. https://doi.org/10.18311/jbc/2013/3257
Macfadyen, S., Hardie, D.C., Fagan, L., Stefanova, K., Perry, K.D., DeGraaf, H.E., Holloway, J., Spafford, H., Umina, P.A., 2014. Reducing insecticide use in broad-acre grains production: An Australian study. PLoS One 9, e89119. https://doi.org/10.1371/journal.pone.0089119
Mason, P.G., Erlandson, M.A., Elliott, R.H., Harris, B.J., 2002. Potential impact of spinosad on parasitoids of Mamestra configurata (Lepidoptera: Noctuidae). Canadian Entomologist 134, 59–68. https://doi.org/10.4039/Ent13459-1
Mirmohammadi, S., Allahyari, H., Nematollahi, M.R., Saboori, A., 2009. Effect of host plant on biology and life table parameters of Brevicoryne brassicae (Hemiptera: Aphididae). Annals of the Entomological Society of America 102, 450–455. https://doi.org/10.1603/008.102.0314
Mishra, A., Kumar, J., Melo, J.S., Sandaka, B.P., 2021. Progressive development in biosensors for detection of dichlorvos pesticide: A review. Journal of Environmental Chemistry and Engineering 9, 105067. https://doi.org/10.1016/j.jece.2021.105067
Mužinić, V., Želježić, D., 2018. Non-target toxicity of novel insecticides. Archives of Industrial Hygiene and Toxicology 69, 86–102. https://doi.org/10.2478/aiht-2018-69-3111
Nematollahi, M.R., Fathipour, Y., Talebi, A.A., Karimzadeh, J., Zalucki, M.P., 2014. Parasitoid- and hyperparasitoid-mediated seasonal dynamics of the cabbage aphid (Hemiptera: Aphididae). Environmental Entomology 43, 1542–1551. https://doi.org/10.1603/EN14155
Nozad-Bonab, Z., Hejazi, M.J., Iranipour, S., Arzanlou, M., Biondi, A., 2021. Lethal and sublethal effects of synthetic and bio-insecticides on Trichogramma brassicae parasitizing Tuta absoluta. PLoS One 16. https://doi.org/10.1371/journal.pone.0243334
Perez-Farinos, G., Smagghe, G., Marco, V., Tirry, L., Castañera, P., 1998. Effects of topical application of hexaflumuron on adult sugar beet weevil, Aubeonymus mariaefranciscae, on embryonic development: pharmacokinetics in adults and embryos. Pesticide Biochemistry and Physiology 61, 169–182. https://doi.org/10.1006/pest.1998.2356
Picard, M.-È., Cusson, M., Sen, S.E., Shi, R., 2021. Rational design of Lepidoptera-specific insecticidal inhibitors targeting farnesyl diphosphate synthase, a key enzyme of the juvenile hormone biosynthetic pathway. J Pestic Sci 46, 7–15. https://doi.org/10.1584/jpestics.D20-078
Pimentel, D., 2009. Pesticides and pest control. Integrated Pest Management 1, 83–87. https://doi.org/10.1007/978-1-4020-8992-3_3
Preetha, G., Stanley, J., Suresh, S., Samiyappan, R., 2010. Risk assessment of insecticides used in rice on miridbug, Cyrtorhinus lividipennis Reuter, the important predator of brown planthopper, Nilaparvata lugens (Stal.). Chemosphere 80, 498–503. https://doi.org/10.1016/j.chemosphere.2010.04.070
Rahaman, M.M., Stout, M.J., 2019. Comparative efficacies of next-generation insecticides against yellow stem borer and their effects on natural enemies in rice ecosystem. Rice Science 26, 157–166. https://doi.org/10.1016/j.rsci.2019.04.002
Ribeiro, A. V., Holle, S.G., Hutchison, W.D., Koch, R.L., 2021. Lethal and sublethal effects of conventional and organic insecticides on the parasitoid Trissolcus japonicus, a biological control agent for Halyomorpha halys. Frontiers in Insect Science 1. https://doi.org/10.3389/finsc.2021.685755
Rosenheim, J.A., Hoy, A.A., 1988. Sublethal effects of pesticides on the parasitoid Aphytis melinus (Hymenoptera: Aphelinidae), Journal of Economic Entomology, 81, 476–483, https://doi.org/10.1093/jee/81.2.476
Salgado, V.L., 1998a. Studies on the Mode of Action of spinosad: insect symptoms and physiological correlates. Pesticide Biochemistry and Physiology 60, 91–102. https://doi.org/10.1006/pest.1998.2332
Salgado, V.L., Watson, G.B., Sheets, J.J., 1997. Studies on the mode of action of Spinosad, the active ingredient in tracer insect control. Beltwide Cotton Conferences (USA) 1082–1086.
Sattar, S., Farmanullah, Saljoqi, A.U.R., Arif, M., Sattar, H., Qazi, J.I., 2011. Toxicity of some new insecticides against Trichogramma chilonis (Hymenoptera: Trichogrammatidae) under laboratory and extended laboratory conditions. Pakistan Journal of Zoology 43, 1117–1125.
Shankarganesh, K., Paul, B., Gautam, R.D., 2013. Studies on ecological safety of insecticides to egg parasitoids, Trichogramma chilonis Ishii and Trichogramma brasiliensis (Ashmead). National Academy Science Letters 36, 581–585. https://doi.org/10.1007/s40009-013-0172-9
Smith, R.J., 1991. Integration of Biological Control Agents with Chemical Pesticides, in: Microbial Control of Weeds. pp. 189–208. https://doi.org/10.1007/978-1-4615-9680-6_11
Teder, T., Knapp, M., 2019. Sublethal effects enhance detrimental impact of insecticides on non-target organisms: A quantitative synthesis in parasitoids. Chemosphere 214, 371–378. https://doi.org/10.1016/j.chemosphere.2018.09.132
Tomizawa, M., Yamamoto, I., 1993. Structure-activity relationships of nicotinoids and imidacloprid analogs. Journal of Pesticide Science 18, 91–98. https://doi.org/10.1584/jpestics.18.91
Torres, J.B., Bueno, A. de F., 2018. Conservation biological control using selective insecticides – A valuable tool for IPM. Biological Control 126, 53–64. https://doi.org/10.1016/j.biocontrol.2018.07.012
Wing, Keith D, Sacher, M., Kagaya, Y., Tsurubuchi, Y., Mulderig, L., Connair, M., Schnee, M., 2000. Bioactivation and mode of action of the oxadiazine indoxacarb in insects. Crop Protection 19, 537–545. https://doi.org/10.1016/S0261-2194(00)00070-3
Wing, Keith D., Sacher, M., Kagaya, Y., Tsurubuchi, Y., Mulderig, L., Connair, M., Schnee, M., 2000. Bioactivation and mode of action of the oxadiazine indoxacarb in insects. Crop Protection 19, 537–545. https://doi.org/10.1016/S0261-2194(00)00070-3
Xie, Y., Hou, X., 2021. Molecular assessment of the toxic mechanism of the latest neonicotinoid dinotefuran with glutathione peroxidase 6 from Arabidopsis thaliana. J Agric Food Chem 69, 638–645. https://doi.org/10.1021/acs.jafc.0c05948