Induced resistance to Crinocerus sanctus (Hemiptera: Coreidae) in cowpea through silicon application

Volume 13, Issue 4
December 2024
Pages 321-332

Document Type : Original Research

Authors

1 Department of Agronomy-Entomology, Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, s/n-Dois Irmãos, Recife-PE, 52171-900, Brazil.

2 Department of Agronomy-Universidade Federal do Pará, Rua Coronel José Porfírio, 2515, Anexo II, São Sebastião,-Altamira-PA, 68372040, Brazil.

3 Department of Agronomic and Forest Sciences, Universidade Federal Rural do Semi-Árido, R. Francisco Mota, 572-Pres. Costa e Silva, Mossoró-RN, 59625-900, Brazil.

4 Department of Agronomy-Universidad del Magdalena, Dirección Carrera 32, 22–08 Santa Marta, 470004, Colombia.

5 Department of Plant Science-Plant Health Sector, Universidade Federal do Ceará. Rua Campus do Pici S/N-Bloco 806-Campus do Pici-CEP 60440-554-Fortaleza–CE.

Abstract
Silicon (Si) is a mineral known to enhance pest resistance in plants belonging to the Poaceae family. However, studies suggest potential benefits of Si in other botanical families such as Fabaceae. Thus, our hypothesis that Si applied in the form of 94.6% silicate would increase cowpea resistance to the stink bug Crinocerus sanctus (Fabricius), in addition to benefiting the physiological aspects of the plant. This study evaluated the vegetative development, total chlorophyll content, yield parameters, and resistance of two cowpea varieties against C. sanctus when sprayed with different doses of Si. Two different doses of Si were administered: the recommended manufacturer's dose (1 g L-1) and a doubled dose (2 g L-1), in addition to a control group (0 g L-1). Plants treated with Si exhibited lower insect density and fewer pods with signs of injury. The peak insect population was observed at the onset of the cowpea's reproductive stage. Furthermore, the chlorophyll content increased from 42 mg m-2 (in the control group) to 48 mg m-2 in Si-treated plants. While the plant height and yield parameters of cowpea remained unaffected by Si application, there was a reduction in the dry mass of the aerial parts in Si-treated crops. This study demonstrated that cowpea can accumulate Si, and its application can enhance resistance against C. sanctus.

Keywords

Subjects
Alam, A., Hariyanto, B., Ullah, H., Salin, K. R., and Datta, A. 2021. Effects of silicon on growth, yield and fruit quality of cantaloupe under drought stress. Silicon, 13: 3153-3162. https://doi.org/10.1007/s12633-020-00673-1
Alhousari, F., and Greger, M. 2018. Silicon and mechanisms of plant resistance to insect pests. Plants, 7(2): 33. https://doi.org/10.3390/plants7020033
Arsenault-Labrecque, G., Menzies, J. G., and Bélanger, R. R. 2012. Effect of silicon absorption on soybean resistance to Phakopsora pachyrhizi in different cultivars. Plant Disease, 96 (1): 37-42. https://doi.org/10.1094/PDIS-05-11-0376
Artyszak, A. 2018. Effect of silicon fertilization on crop yield quantity and quality - A literature review in Europe. Plants, 7(3): 54. https://doi.org/10.3390/plants7030054
Bala, K., Sood, A. K, Pathania, V. S and Thakur, S. 2018. Effect of plant nutrition in insect pest management: A review. Journal of Pharmacognosy and Phytochemistry, 7 (4): 2737-2742.
Bastos, C. S., Ribeiro, A. V., Suinaga, F. A., Brito, S. M., Oliveira, A. A. S., Barbosa, T. M., and Teichmann, Y. S. K. 2015. Resistência de plantas a insetos: contextualização e inserção no MIP. In: Visitto, L. E., Fernandes, F. L., Carvalho Filho, A., Lopes, E. A.,
Aquino, L. A., Fernandes, M. E. S., Good God, P. I. V., Ruas, R. A. A., and Sousa Júnior, J. M. (Eds.), Avanços Tecnológicos Aplicados à Pesquisa na Produção Vegetal. Viçosa, BR: UFV. pp. 31-72.
Boukar, O., Belko, N., Chamarthi, S., Togola, A., Batieno, J., Owusu, E., Haruna, M., Diallo, S., Umar, M. L., Olufajo, O., and Fatokun, C. 2019. Cowpea (Vigna unguiculata): Genetics, genomics and breeding. Plant Breeding, 138(4): 415-424. https://doi:10.1111/pbr.12589
Bussolaro, I., Zelin, E., and Simoneti, A. P. M. M. 2011. Aplicação de silício no controle de percevejos e produtividade da soja. Cultivando o Saber, 4(3): 9-19.
Campos, F. L., Freire Filho, F. R., Lopes, A. D. A., Ribeiro, V., Silva, R. D., and Rocha, M. D. M. 2000. Ciclo fenológico em caupi (Vigna unguiculata L. Walp): uma proposta de escala de desenvolvimento. Revista Científica Rural, 5(2): 110-116.
Carvalho, J. J., Teixeira, M. B., Filho, A. C., Filho, R. S., and Moura, L. M. F. 2015. Adubação silicatada em substituição à calagem sobre características fisiológicas de feijão cultivadas com e sem déficit hídrico. International Meeting. Available from: https://web.archive.org/web/20190427121317id_/http://www.bibliotekevirtual.org/simposios/III-INOVAGRI-2015/03.09.2015/a344.pdf [Accessed 15th June 2013].
Curcio, G. R., Lima, V. C., and Giarola, N. F. B. 2004. Antropossolos: proposta de ordem (1ª aproximação). Colombo, BR: Embrapa Florestas.
EMBRAPA. 2009. Manual de análises químicas de solos, plantas e fertilizantes. 2. ed. Brasília: Embrapa Informação Tecnológica.
Fazolin, M., Estrela, J., Alécio, M., and Alves, S. 2016. Feijão. In: Silva, M. N., Adaime, R., and Zucchi, R. A. (Eds.), Pragas Agrícolas e Florestais na Amazônia. Belém, BR: Embrapa. pp. 323-343.
Ferreira, R. S., and Moraes, J. C. 2011. Silicon influence on resistance induction against Bemisia tabaci biotype B (Genn.) (Hemiptera: Aleyrodidae) and on vegetative development in two soybean cultivars. Neotropical entomology, 40(4): 495-500. https://doi.org/10.1590/S1519-566X2011000400014
Flores, R. A., Souza Junior, J. P., Santos, A. S., Cruz, F. J. R., Campos, C. N. S., Silva Junior, G. B., and Prado, R. M. 2019. Importância do silício na bioquímica e fisiologia das plantas. In: Flores, R. A., Cunha, P. P., Marchão, R. L., and Moraes, M. F. (Eds.), Nutrição e adubação de grandes culturas na região do cerrado. Goiás, BR: Editora UFG. pp. 77-96.
Freire Filho, F. R. 2011. Feijão-caupi no Brasil: produção, melhoramento genético, avanços e desafios. Teresina, BR: Embrapa Meio-Norte.
Garg K., Dhar, S., and Jinger, D. 2020. Silicon nutrition in rice (Oryza sativa L.) - A review. Annals of Agricultural Science, 41(3): 221-229.
Guerriero, G., Hausman, J. F., and Legay, S. 2016. Silicon and the Plant Extracellular Matrix. Frontiers in Plant Science, 7: 463. https://doi.org/10.3389/fpls.2016.00463
Heil, M., and Bostock, R. M. 2002. Induced systemic resistance (ISR) against pathogens in the context of induced plant defenses. Annals of botany, 89 (5): 503-512. https://doi.org/10.1093/aob/mcf076
Hussain, S., Mumtaz, M., Manzoor, S., Shuxian, L., Ahmed, I., Skalicky, M., ... and Liu, W. 2021. Foliar application of silicon improves growth of soybean by enhancing carbon metabolism under shading conditions. Plant Physiology and Biochemistry, 159: 43-52.
Iaguirre-Mayoral, M., Brito, M., Baral, B., & Garrido, M. 2017. Silicon and nitrate differentially modulate the symbiotic performances of healthy and virus-infected Bradyrhizobium-nodulated cowpea (Vigna unguiculata), yardlong bean (V. unguiculata subsp. sesquipedalis) and mung bean (V. radiata). Plants, 6: 40. https://doi.org/10.3390/plants6030040
INMET. Instituto Nacional de Meteorologia. Mapas de Climatologia. Banco de Dados Meteorológicos. Available from: https://bdmep.inmet.gov.br/. [Accessed 8th May 2013]
ISTA, International Seed Testing Association. 2020. International rules for seed testing. ISTA. Available from: https://www.seedtest.org/en/publications/international-rules-seed-testing.html. [Accessed 8th November 2024]
Kluge, R. A.,Tezotto-Uliana, J. V., and da Silva, P. P. 2015. Aspectos fisiológicos e ambientais da fotossíntese. Revista virtual de química, 7 (1): 56-73. http://dx.doi.org/10.5935/1984-6835.20150004
Kumaraswamy, R. V., Saharan, V., Kumari, S., Choudhary, R. C., Pal, A., Sharma, S. S., ... and Biswas, P. 2021. Chitosan-silicon nanofertilizer to increase the growth and productivity of corn (Zea mays L.). Plant Physiology and Biochemistry, 159: 53-66. https://doi.org/10.1016/j.plaphy.2020.11.054
Ma, J. F., and Yamaji, N. 2006. Silicon uptake and accumulation in higher plants. Trends in plant science, 11(8): 392-397. http://dx.doi.org/10.1016/j.tplants.2006.06.007.
Marsaro Jr, A. L., and Pereira, P. D. S. 2013. Flutuação populacional de insetos-praga na cultura do feijão-caupi no Estado de Roraima. Revista Acadêmica: Ciências Agrárias e Ambientais, 11(1): 13-18. https://doi.org/10.7213/academica.10.S01.AO01
Oliveira, R. R. T., Grangeiro, L. C., Morais, É. G., de Freitas Pereira, D., da Nóbrega Santos, E., Silva, I. B. M., ... and Queiroz, G. C. M. 2024. Fertilization with Silicon in Garlic Grown at Low and High Altitudes in a Semi-arid Region. Silicon, 1-8. https://doi.org/10.1007/s12633-024-02954-5
Pereira, T. S., Souza, C. L. F. C., Lima, E. J. A., Batista, B. L., and Lobato, A. K. S. 2017. Silicon deposition in roots minimizes the cadmium accumulation and oxidative stress in leaves of cowpea plants. Physiology and Molecular Biology of Plants, 24(1): 99-114. http://dx.doi.org/10.1007/s12298-017-0494-z.
Pilon, C., Soratto, R. P., and Moreno, L. A. 2013. Effects of Soil and Foliar Application of Soluble Silicon on Mineral Nutrition, Gas Exchange, and Growth of Potato Plants. Crop Science, 53(4): 1605-1614. http://dx.doi.org/10.2135/cropsci2012.10.0580.
Prado, R. M., Felisberto, G., and Flores, R. A. 2019. Viabilidade técnica da aplicação foliar com silício em culturas. In: Flores, R. A., Cunha, P. P., Marchão, R. L., and Moraes, M. F. (Eds.), Nutrição e adubação de grandes culturas na região do cerrado. Editora UFG. pp. 97-138.
Putra, R., Powell, J. R., Hartley, S. E., & Johnson, S. N. 2020. Is it time to include legumes in plant silicon research? Functional Ecology, 34(6): 1142-1157. https://doi.org/10.1111/1365-2435.13565
R Core Team. 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: URL https://www.R-project.org/ [Accessed 18th June 2023]
Santos-Cividanes, T. M., Cividanes, F. J., Garcia, J. C., Vilela, M., Moraes, J. C., and Barbosa, J. C. 2022. Silicon induces resistance to Diatraea saccharalis in sugarcane and it is compatible with the biological control agent Cotesia flavipes. Journal of Pest Science, 95: 783–795. https://doi.org/10.1007/s10340-021-01429-5
Schaefer, C. W., and Panizzi, A. R. 2000. Leaf-footed bugs (Coreidae). In: Schaefer, C. W., and Panizzi, A. R. (Eds.), Heteroptera of Economic Importance. Press CRC. pp. 359-426.
Taiz, L., Zeiger, E., Møller, I.M., Murphy, A. 2017. Fisiologia e Desenvolvimento Vegetal, 6. ed. Porto Alegre: Artmed.
Teodoro, P. E., Ribeiro, L. P., Oliveira, E. P. D., Corrêa, C. C. G., and Torres, F. E. 2015. Acúmulo de massa seca na soja em resposta a aplicação foliar com silício sob condições de déficit hídrico. Bioscience Journal, 31(1): 161-170. https://doi.org/10.14393/BJ-v31n1a2015-22283
Valério, R. 2013. Manejo de Insetos-Pragas. In: Reis, R. A., Bernerdes, T. F., and Siqueira, G. R. (Eds.), Forragicultura: ciência, tecnologia e gestão dos recursos forrageiros. Jaboticabal, BR: Funep. pp. 317-331.
Xie, Z., Song, F., Xu, H., Shao, H., and Song, R. 2014. Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil. The Scientific World Journal, 2014:1-6. https://doi.org/10.1155/2014/718716
Yakubu, B. L., Mbonu, O. A., and Nda, A. J. 2012. Cowpea (Vigna unguiculata) pest control methods in storage and recommended practices for efficiency: a review. Journal of Biology, Agriculture and Healthcare, 2(2): 27-33.
Ye, M., Song, Y., Long, J., Wang, R., Baerson, S. R., Pan, Z., ... and Zeng, R. 2013. Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proceedings of the National Academy of Sciences, 110(38): E3631-E3639.
Zhang, W., Xie, Z., Lang, D., Cui, J. e Zhang, X. 2017. Beneficial effects of silicon on abiotic stress tolerance in legumes. Journal of Plant Nutrition, 40: 2224-2236.