Abd-El-Khair, H., Abdel-Gaied, T.G., Mikhail, M.S., Abdel‑Alim, M.I. and Seif El‑Nasr, H.I. 2021 Biological control of Pectobacterium carotovorum subsp. carotovorum, the causal agent of bacterial soft rot in vegetables, in vitro and in vivo tests. Bulletin of the National Research Centre, 45:37.
Afsharmanesh, H., Ahmadzadeh, M., Javan-Nikkhah, M. and Behboudi, K. 2010. Characterization of the antagonistic activity of a new indigenous strain of Pseudomonas fluorescens isolated from onion rhizosphere. Journal of Plant Pathology, 92 (1), 187-194.
Aghdam, N.MN., Baghaee-Ravari, S. and Shiri, A. 2023. Antimicrobial capacity of Pseudomonas brassicacearum strain EnPb against potato soft rot agent. European Journal of Plant Pathology, 165: 215–231 (2023).
Ahmad, F., Ahmad, I. and Khan, M. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163:173–181.
Ahmadzadeh, M. and Sharifi-Tehrani, A. 2009. and Evaluation of fluorescent Pseudomonads for plant growth promotion, antifungal activity against Rhizoctonia solani on common bean, and biocontrol potential. Biological Control, 48 :101–107.
Baghaee-Ravari, S., Moslemkhani, K. and Khodaygan, P. 2013. Assessment of genetic variability of prevalent pectinolytic bacteria causing potato tuber soft rot in eastern. Journal of Plant Pathology, 95 (1): 107-113.
Bakker A.W. and Schippers, B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-mediated plant growth-stimulation. Soil Biology and Biochemistry, 19:51-457.
Bakker, P. A. H. M., Pieterse, C. M. J. and van Loon, L. C. 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology, 97:239-243.
Bossis, E., Lemanceau, Ph., Latour, X. and Gardan, L. 2000. The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: current status and need for revision. Agronomie, 20 (1): 51-63
Charkowski, A.O. 2015. Biology and control of Pectobacterium in potato. American Journal of Potato Research, 92: 223–229.
Charkowski, A.O. 2018. The Changing Face of Bacterial Soft-Rot Diseases. Annual Review of Phytopathology, 56: 13.1–13.20.
Costa, R., Van Aarle, I. M., Mendes, R. and Van Elsas, J. D. 2009. Genomics of pyrrolnitrin biosynthetic loci: evidence for conservation and whole-operon mobility within Gram-negative bacteria. Environmental Microbiology, 11(1): 159–175.
Cronin, D., Moënne-Loccoz, Y., Fenton, A., Dunne, C., Dowling, D.N. and O’Gara, F. 1997. Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiology Ecology, 23: 95–106.
Czajkowski, R., de Boera, W.J., van Veen, j. A. and van der Wolfa, J. M. 2012. Characterization of bacterial isolates from rotting potato tuber tissue showing antagonism to Dickeya sp. biovar 3 in vitro and in planta. Journal of Plant Pathology, 61:169–182.
Degefu, Y. 2024. Lesson from the emergence, spread and decline of Dickeya solani, the virulent potato blackleg and soft rot bacterial pathogen in Finland. Journal of Phytopathology. 172: e13282.
Des Essarts, Y.R., Cigna, J., Quetu-Laurent, A., Caron, A., Munier, E., Beury-Cirou, A., Hélias, V. and Faure, D. 2016. Biocontrol of the potato blackleg and soft rot diseases caused by Dickeya dianthicola. Applied and Environmental Microbiology Journal, 82: 268–278.
Gerayeli, N., Baghaee-Ravari, S. and Tarighi, S. 2018. Evaluation of the antagonistic potential of Bacillus strains against Pectobacterium carotovorum subsp. carotovorum and their role in the induction of resistance to potato soft rot infection. European Journal of Plant Pathology, 150 :1049–1063.
Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. National Review of Microbiology, 3:307–319.
Haas, D. and Keel, C. 2003. Regulation of antibiotic production in rootcolonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual Review of Phytopathology, 41:117–153.
Hadizadeh, I. and Peivastegan, B. 2019 Biological control of potato soft rot caused by Dickeya solani and the survival of bacterial antagonists under cold storage conditions. Plant Pathology, 68: 297–311.
Hofte, M. and Bakker, P.A.H.M. 2007. Competition for iron and induced systemic resistance by siderophores of plant growth promoting rhizobacteria. In: Microbial Siderophores. Springer: Berlin/Heidelberg, Germany, p:121-133.
Hankin, L. and anagnostakis, S.L. 1977. Solid media containing carboxymethylcellulose to detect Cx cellulase activity of micro-organisms. Journal of General Microbiology, 98:109-115.
Jayasankar, N.P. and Graham, P.H. 1970. An agar plate method for screening and enumerating pectinolytic microorganisms. Canadian Journal of Microbiology, 16: 1023.
Kang, M., Kim, S.J., Lee, J.Y., Yoon, S.R., Kim, S.H. and Ha, J.H. 2018. Inactivation of Pectobacterium carotovorum subsp. carotovorum on Chinese cabbage (Brassica rapa L. subsp. pekinensis) by wash treatments with phenolic compounds. LWT-Food Science and Technology, 93:229–236.
Kastelein, P., Forch, M., Krijger, M., Van der Zouwen, P, Van den Berg, W. and Van der Wolf, J. 2020. Systemic colonization of potato plants resulting from potato haulm inoculation with Dickeya solani or Pectobacterium parmentieri. Canadian Journal of Plant Pathology, 43:1–15.
Keshavarztohid ,V., Taheri , P., Muller, D., Prigent-Combaret, C., Vacheron , J., Taghavi , S.M. Tarighi, S. and Moenne-Loccoz, Y. 2017. Phylogenetic diversity and antagonistic traits of root and rhizosphere pseudomonads of bean from Iran for controlling Rhizoctonia solani. Research in Microbiology, 108 (8): 760-772.
King, E.D., Ward, M.K. and Raney, D.E. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine, 44:301–7
Krzyzanowska, D. M., Ossowicki, A., Rajewska, M., Macia, T., Jabłonska, M.,Obuchowski, M., Heeb, S. and Jafra, S. 2016. When genome-based approach meets the “old but good”: Revealing genes involved in the antibacterial activity of Pseudomonas sp. P482 against soft rot pathogens. Frontiers in Microbiology, 7:782.
Krzyzanowska, D.M., Maciag, T., Siwinska, J., Krychowiak, M., Jafra, S. and Czajkowski, R. 2019. Compatible mixture of bacterial antagonists developed to protect potato tubers from soft rot caused by Pectobacterium spp. and Dickeya spp. Plant Disease, 103: 1374-1382.
Krzyzanowska, D.M., Potrykus, M., Golanowska, M., Polonis, K., Gwizdek-Wisniewska, A., Lojkowska, E. and Jafra, S. 2012. Rhizosphere bacteria as potential biocontrol agents against soft rot caused by various Pectobacterium and Dickeya spp. strains. Journal of Plant Pathology, 94: 367-378.
Kodakaramian, GH. And Zafari, D. 2010. Identification of fluorescent Pseudomonads isolated from potato rhizospher and assessment of their antagonistic activity towards Pectobacterium carotovorum under field condition. Applied Entomology and Phytopathology. 77(2): 1-18.
Lalucat, J., Mulet, M., Gomila, M. and García-Valdés, E. 2020. Genomics in bacterial taxonomy: impact on the genus Pseudomonas. Genes. 11(2):11020139.
Lanteigne, C., Gadkar, V. J., Wallon, T., Novinscak, A. and Filion, M. 2012. Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology, 102(10): 967–973.
Lapwood, D. H., Read, P. J. and Spokes, J. 1984. Methods for assessing the susceptibility of potato tubers of different cultivars to rotting by Erwinia carotovora subspecies atroseptica and carotovora. Plant Pathology, 33(1), 13-20.
Lugtenberg, B.J.J., Dekkers, L. and Bloemberg, G.V. 2001. Molecular determinants of rhizosphere colonization by Pseudomonads. Annual Review of Phytopathology, 39:461–490
Ma, Y., Prasad, M., Rajkumar, M. and Freitas, H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29: 248–258.
Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G. and Foster, G. D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 6: 614–629.
Marquez-Villavincencio, M., Weber, B., Witherell, R. A., Willis, D. K. and Charkowski, A. O. 2011. The 3-hydroxy-2-butanone pathway is required for Pectobacterium carotovorum pathogenesis. PLoS One, 6: e22974.
Mavrodi, O.V., Gardener, B.B.M., Mavrodi, D.V., Bonsall, R.F., Weller, D.M. and Thomashow, L. S. 2001. Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. Phytopathology, 91:35–43.
Michelsen, C.F. and Stougaard, P. 2012. Hydrogen cyanide synthesis and antifungal activity of the biocontrol strain Pseudomonas fluorescens In5 from Greenland is highly dependent on growth medium. Canadian Journal of. Microbiology, 58: 381–390.
Mishra, J. and Arora, N. K. 2018. Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Applied Soil Ecology, 125:35-45.
Mishra, S. and Arora, N.K. 2012. Management of black rot in cabbage by rhizospheric Pseudomonas species and analysis of 2,4-diacetylphloroglucinol by qRT-PCR. Biological Control, 61: 32–39.
Murthy, N. and Bleakley, B. 2012. Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. Internetional Journal of Microbiology, 10 (2): 1–5.
Nowak-Thompson, B., Gould, S.J. and Loper, J.E. 1997. Identification and sequence analysis of the genes encoding a polyketide synthase required for pyoluteorin biosynthesis in Pseudomonas fluorescens Pf-5. Gene, 204 (1–2): 17–24.
Nykyri, J., Fang, X., Dorati, F., Bakr, R., Pasanen, M., Niemi, O., Palva, E.T., Jackson, R.W. and Pirhonen, M. 2014. Evidence that nematodes may vector the soft rot-causing enterobacterial phytopathogens. Plant Pathology, 63: 747–75.
O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28 (3): 449–461.
Palmieri, D., Ianiri, G., Del Grosso, C., Barone, G., De Curtis, F., Castoria, R. and Lima, G. 2022. Advances and perspectives in the use of biocontrol agents against fungal plant diseases. Horticulturae, 8: 577.
Panpatte, D.G., Jhala, Y. K., Shelat, H. N. and Vyas, R. V. 2016. "Pseudomonas fluorescens: a promising biocontrol agent and PGPR for sustainable agriculture,” in Microbial Inoculants in Sustainable Agricultural Productivity, eds D. P. Singh, H. B. Singh, and R. Prabha (New Delhi: Springer), 257–270.
Paulin, M. M., Novinscak, A., Lanteigne, C., Gadkar, V. J. and Filion, M. 2017. Interaction between 2,4-diacetylphloroglucinol- and hydrogen cyanide-producing Pseudomonas brassicacearum LBUM300 and Clavibacter michiganensis subsp. michiganensis in the tomato rhizosphere. Applied Environmental Microbiology, 83(13):1–13.
Pirttila, A.M., Mohammad Parast Tabas, H., Baruah, N. and Koskimäki, J.J. 2021. Biofertilizers and biocontrol agents for agriculture: how to identify and develop new potent microbial strains and traits. Microorganisms, 9:817.
Raaijmakers, J., Weller, D.M. and Thomashow, L.S. 1997. Frequency of antibiotic producing Pseudomonas spp. in natural environments. Applied and Environmental Microbiology, 63,881–887.
Raaijmakers, J.M., De Bruijn, I., Nybroe, O. and Ongena, M. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiology Review, 34 (6): 1037–1062.
Ramette, A., Frapolli, M., Saux, M. F. Le, Gruffaz, C., Meyer, J. M., Défago, G., Sutra, L. and Moenne-Loccoz, Y. 2011. Pseudomonas protegens sp. nov., widespread plantprotectin bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Systemic and Applied Microbiology, 34(3): 180–188.
Sameza, M. L., Nguemnang Mabou, L. C., Tchameni, S. N., Boat Bedine, M. A., Tchoumbougnang, F., Jazet Dongmo, P. M. and Boyom Fekam, F. 2016. Evaluation of clove essential oil as a mycobiocide against Rhizopus stolonifer and Fusarium solani, tuber rot causing fungi in yam (Dioscorea rotundata Poir.). Journal of Phytopathology, 164(7-8): 433-440.
Schaad, N.W., Jones, J.B. and Chun, W. 2001. Laboratory guide for identification of plant pathogenic bacteria, third ed. American Phytopathological Society Press, St. Paul, MN, MN, USA.
Schwyn, B. and Neilands, J.B. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160 (1): 47–56.
Sharifi-Tehrani, A., Zala, M., Natsch, A., Moënne-Loccoz1, Y. and Defago, M. 1998. Biocontrol of soil-borne fungal plant diseases by 2,4 diacetylphloroglucinol-producing fluorescent pseudomonads with different restriction profiles of amplified 16S rDNA. European Journal of Plant Pathology, 104: 631–643, 1998.
Smibert, R.M. and Krieg, N.R. 1994. Phenotypic characterization. In: Gerhardt, P., Murray, R.G.E., Wood, W.A., Krieg, N.R. (Eds.), Methods for general and Molecular Bacteriology. American Society for Microbiology, Washington, DC, pp. 607–654.
Takeuchi, K., Noda, N., Katayose, Y., Mukai, Y., Numa, H., Yamada, K. and Someya, N. 2015. Rhizoxin analogs contribute to the biocontrol activity of a newly isolated Pseudomonas strain. Moleclar Plant Microbe Interaction, 28(3):333–342.
Thompson, J.D,, Gibson, T.J., Plewniak, F., Jeanmougin, F. and Higgins, D.G. 1997. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25 (24): 4876–4882.
Vacheron, J., Moenne-Loccoz, Y., Dubost, A., Gonçalves-Martins, M., Muller, D. and Prigent-Combaret, C. 2016. Fluorescent Pseudomonas strains with only few plants beneficial properties are favored in the maize rhizosphere. Frontiers in Plant Science, 7: 1212.
Van der Wolf, J.M., De Boer, S.H., Czajkowski, R., Cahill, G., Van Gijsegem, F., Davey, T., Dupuis, B., Ellicott, J., Jafra, S. and Kooman, M. 2021. Management of diseases caused by Pectobacterium and Dickeya species. In: Plant Diseases Caused by Dickeya and Pectobacterium Species; Springer: Berlin/Heidelberg, Germany, pp. 175–214.
Vivekananthan, R., Ravi, M., Ramanathan, A. and Samiyappan , R. 2004. Lytic enzymes induced by Pseudomonas fluorescens and other biocontrol organisms mediate defence against the anthracnose pathogen in mango. World Journal of Microbiology and Biotechnology, 20: 235–244
Weisburg, W.G., Barns, S.M., Pelletier, D.A. and Lane, D.J. 1991. 16S Ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173 (2): 697–703.
Weller, D.M., Landa, B.B., Mavrodi, O.V., Schroeder, K.L., De La Fuente, L., et al., 2007. Role of 2,4- diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biology, 9: 4–20.
Zhang, D., Spadaro, D., Valente, S., Garibaldi, A. and Gullino, M. L. 2012. Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens. International Journal of Food Microbiology, 153: 453–464.
Zhang, Q.X., Kong, X.W., Li, S.Y. et al. 2020. Antibiotics of Pseudomonas protegens FD6 are essential for biocontrol activity. Australasian Plant Pathology, 49: 307–317.