Andreadis, S.S., Eliopoulos, P.A. and Savopoulou-Soultani, M., 2012. Cold hardiness of immature and adult stages of the Mediterranean flour moth, Ephestia kuehniella. Journal of stored products research, 48, pp.132-136.
Atungulu, E., Tanaka, H., Fujita, K., Yamamoto, K.I., Sakata, M., Sato, E., Hara, M., Yamashita, T. and Suzuki, K., 2006. A double chaperone function of the sHsp genes against heat-based environmental adversity in the soil-dwelling leaf beetles. Journal of Insect Biotechnology and Sericology, 75(1), pp.15-22.
Boardman, L., Sørensen, J. G., and Terblanche, J. S. 2013. Physiological responses to fluctuating thermal and hydration regimes in the chill susceptible insect, Thaumatotibia leucotreta. Journal of Insect Physiology, 59(8), 781-794.
Boardman, L., Sørensen, J. G., and Terblanche, J. S. 2015. Physiological and molecular mechanisms associated with cross tolerance between hypoxia and low temperature in Thaumatotibia leucotreta. Journal of insect physiology, 82, 75-84.
Bozinovic, F., Sabat Opazo, P., Rezende, E.L., Canals Lambarri, M., 2016. Temperature variability and thermal performance in ectotherms: acclimation, behavior, and experimental considerations. Cold Spring Harbor Laboratory Press, New York.
Chang, Y.W., Zhang, X.X., Chen, J.Y., Lu, M.X., Gong, W.R., and Du, Y.Z. 2018. Characterization of three heat shock protein 70 genes from Liriomyza trifolii and expression during thermal stress and insect development. Bulletin of entomological research, 1-10
Clark, M. S., and Worland, M. R. 2008. How insects survive the cold: molecular mechanisms—a review. Journal of Comparative Physiology B, 178(8), 917-933.
Colinet H, Lee SF, Hoffmann A. (2010). Knocking down expression of Hsp22 and Hsp23 by RNA inter- ference affects recovery from chill coma in Drosophila melanogaster. J. Exp. Biol. 213:4146–50
Farahani, S., Bandani, A. R., Alizadeh, H., Goldansaz, S. H., and Whyard, S. 2020. Differential expression of heat shock proteins and antioxidant enzymes in response to temperature, starvation, and parasitism in the Carob moth larvae, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). PloS one, 15(1), e0228104.
Fields, P.G., 1992. The control of stored-product insects and mites with extreme temperatures. Journal of Stored Products Research, 28(2), pp.89-118.
Gu, L.L., Li, M.Z., Wang, G.R., and Liu, X.D. 2019. Multigenerational heat acclimation increases thermal tolerance and expression levels of Hsp70 and Hsp90 in the rice leaf folder larvae. Journal of Thermal Biology, 81, 103-109.
Guo, X.J., and Feng, J.N. 2018. Comparisons of Expression Levels of Heat Shock Proteins (hsp70 and hsp90) From Anaphothrips obscurus (Thysanoptera: Thripidae) in Polymorphic Adults Exposed to Different Heat Shock Treatments. Journal of Insect Science, 18(3), 15.
Heinrich, B. 1981. Ecological and evolutionary perspectives, pp. 236–302. In B. Heinrich (ed.), Insect thermoregulation. Wiley, New York.
Izadi, H., Mohammadzadeh, M. and Mehrabian, M., 2019. Changes in biochemical contents and survival rates of two stored product moths under different thermal regimes. Journal of thermal biology, 80, pp.7-15.
Jallouli, W., Abdelkefi-Mesrati, L., Tounsi, S., Jaoua, S. and Zouari, N., 2013. Potential of Photorhabdus temperata K122 bioinsecticide in protecting wheat flour against Ephestia kuehniella. Journal of stored products research, 53, pp.61-66.
Joga, M.R., Zotti, M.J., Smagghe, G. and Christiaens, O., 2016. RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: what we know so far. Frontiers in physiology, 7, p.232461.
Ju, R.T., Gao, L., Zhou, X.H. and Li, B., 2014. Physiological responses of Corythucha ciliata adults to high temperatures under laboratory and field conditions. Journal of thermal biology, 45, pp.15-21.
Kim, M., Lee, S., Chun, Y.S., Na, J., Kwon, H., Kim, W. and Kim, Y., 2017. Heat tolerance induction of the Indian meal moth (Lepidoptera: Pyralidae) is accompanied by upregulation of heat shock proteins and polyols. Environmental entomology, 46(4), pp.1005-1011.
King, A.M. and MacRae, T.H., 2015. Insect heat shock proteins during stress and diapause. Annual review of entomology, 60, pp.59-75.
Koštál, V. and Tollarová-Borovanská, M., 2009. The 70 kDa heat shock protein assists during the repair of chilling injury in the insect, Pyrrhocoris apterus. PloS one, 4(2), p.e4546.
Kumar, S., Nehra, M., Dilbaghi, N., Marrazza, G., Hassan, A.A. and Kim, K.H., 2019. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. Journal of Controlled Release, 294, pp.131-153.
Kumar, S., Park, J., Kim, E., Na, J., Chun, Y.S., Kwon, H., Kim, W. and Kim, Y., 2015. Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal moth, Plodia interpunctella. Pesticide Biochemistry and Physiology, 124, pp.48-59.
Lee, R.E., 2010. A primer on insect cold-tolerance. Low temperature biology of insects, pp.3-34.
Lindquist, S. and Craig, E.A., 1988. The heat-shock proteins. Annual review of genetics, 22(1), pp.631-677.
Liu, S., Jaouannet, M., Dempsey, D.M.A., Imani, J., Coustau, C. and Kogel, K.H., 2020. RNA-based technologies for insect control in plant production. Biotechnology advances, 39, p.107463.
Livak, K.J. and Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25(4), pp.402-408.
Marec, F., Kollárová, I. and Pavelka, J., 1999. Radiation-induced inherited sterility combined with a genetic sexing system in Ephestia kuehniella (Lepidoptera: Pyralidae). Annals of the Entomological Society of America, 92(2), pp.250-259.
Mason, L.J. and Strait, C.A., 2019. Stored product integrated pest management with extreme temperatures. In Temperature sensitivity in insects and application in integrated pest management (pp. 141-177). CRC Press.
Mitter, N., Worrall, E.A., Robinson, K.E., Li, P., Jain, R.G., Taochy, C., Fletcher, S.J., Carroll, B.J., Lu, G.Q. and Xu, Z.P., 2017. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature plants, 3(2), pp.1-10.
Nay, J.E., 2006. Biology, ecology, and management of the carob moth, Ectomyelois ceratoniae (Zeller)(Lepidoptera: Pyralidae), a pest of dates, Phoenix dactylifera L., in southern California. University of California, Riverside.
Neven, L.G., 2000. Physiological responses of insects to heat. Postharvest Biology and Technology, 21(1), pp.103-111.
Nguyen, A.D., Gotelli, N.J. and Cahan, S.H., 2016. The evolution of heat shock protein sequences, cis-regulatory elements, and expression profiles in the eusocial Hymenoptera. BMC Evolutionary Biology, 16, pp.1-13.
Parkash, R. and Ranga, P., 2013. Divergence for tolerance to thermal-stress related traits in two Drosophila species of immigrants group. Journal of thermal biology, 38(7), pp.396-406.
Rinehart, J.P., Li, A., Yocum, G.D., Robich, R.M., Hayward, S.A. and Denlinger, D.L., 2007. Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proceedings of the National Academy of Sciences, 104(27), pp.11130-11137.
Sambrook, J. and Russell, D.W., 2001. Molecular Cloning: Ch. 8. In Vitro amplification of DNA by the polymerase chain reaction (Vol. 2). Cold Spring Harbor Laboratory Press.
Schopf, F.H., Biebl, M.M. and Buchner, J., 2017. The HSP90 chaperone machinery. Nature reviews Molecular cell biology, 18(6), pp.345-360.
Stejskal, V., 2015. Pest prevention during storage, transportation and handling of stored products. Integ. Prot. Stored Prod, 111, pp.171-176.
Terenius, O., Papanicolaou, A., Garbutt, J.S., Eleftherianos, I., Huvenne, H., Kanginakudru, S., Albrechtsen, M., An, C., Aymeric, J.L., Barthel, A. and Bebas, P., 2011. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. Journal of insect physiology, 57(2), pp.231-245.
Trotta, V., Forlano, P., Falabella, P., Battaglia, D. and Fanti, P., 2018. The aphid Acyrthosiphon pisum exhibits a greater survival after a heat shock when parasitized by the wasp Aphidius ervi. Journal of thermal biology, 72, pp.53-58.
Tungjitwitayakul, J., Tatun, N., Vajarasathira, B. and Sakurai, S., 2016. Effects of ultraviolet-C and microwave irradiation on the expression of heat shock protein genes in the maize weevil (Coleoptera: Curculionidae). European Journal of Entomology, 113, p.135.
Verberk, W.C., Overgaard, J., Ern, R., Bayley, M., Wang, T., Boardman, L. and Terblanche, J.S., 2016. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 192, pp.64-78.
Xu, H.J., Xue, J., Lu, B., Zhang, X.C., Zhuo, J.C., He, S.F., Ma, X.F., Jiang, Y.Q., Fan, H.W., Xu, J.Y. and Ye, Y.X., 2015. Two insulin receptors determine alternative wing morphs in planthoppers. Nature, 519(7544), pp.464-467.
Yocum, G.D. and Denlinger, D.L., 1992. Prolonged thermotolerance in the flesh fly, Sarcophaga crassipalpis, does not require continuous expression or persistence of the 72 kDa heat-shock protein. Journal of Insect Physiology, 38(8), pp.603-609.
Wang, L., Yang, S., Han, L., Zhao, K. and Ye, L., 2015. Expression profile of two HSP70 chaperone proteins in response to extreme thermal acclimation in Xestia c-nigrum (Lepidoptera: Noctuidae). Florida entomologist, 98(2), pp.506-515.