Foraging behavior of different developmental stages of Hippodamia variegata (Coleoptera: Coccinellidae) on Hyalopterus amygdali (Hemiptera: Aphididae)

Volume 12, Issue 3
September 2023
Pages 241-252

Document Type : Original Research

Authors

Department of Plant Protection, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, AREEO, Shahrekord, Iran.

Abstract
Biological control represents an effective approach for managing pest populations in horticultural crops, presenting an alternative to the reliance on pesticides. To ensure the successful integration of predators into biological control programs, it is imperative to conduct thorough assessments of how these predators respond to changes in prey density in laboratory settings. In this study, we investigated the functional response of various developmental stages of Hippodamia variegata (Coleoptera: Coccinellidae) when exposed to varying densities of Hyalopterus amygdali (Hemiptera: Aphididae) at 26°C, 65 ± 5% RH, and 16L: 8D h photoperiod. Each treatment was replicated 15 times and conducted on almond leaves placed within Petri dishes. Our findings revealed that all larval stages, as well as adult males and females of the predator, exhibited a type II functional response when presented with different prey densities. We quantified searching efficiency (0.0219, 0.0173, 0.0163, 0.0141, 0.0198, and 0.0128 h-1) and handling times (5.7650, 2.6023, 0.7303, 0.3166, 0.7352, and 0.2920 h) for the first through fourth instar larvae, male and female adults, using Holling's disc equation. Notably, handling times for males were significantly longer than those for females or fourth instar larvae. Nevertheless, no statistically significant differences were observed in the attack rate between fourth instar larvae and either adult females or males. The maximum attack rate (T/Th) for the first to fourth instar larvae, male, and female H. variegata was estimated as 4.163053, 9.222611, 10.52909, 100.2925, 32.64418, and 82.19178, respectively. Consequently, our results indicate that the fourth instar larvae and adult females of H. variegata are recommended for utilization in biological control programs aimed at managing H. amygdali populations.

Keywords

Alexander, M.E., Dick, J.T.A., O’Connor, N.E., Haddaway, N.R. and Farnsworth, K.D. 2012. Functional responses of the intertidal amphipod Echinogammarus marinus: Effects of prey supply, model selection and habitat complexity. Marine Ecology Progress Series, 468, 191–202.
Atlihan, R. and Guldal, H. 2009. Prey Density-dependent Feeding Activity and Life History of Scymnus subvillosus Goeze. (Coleoptera: Coccinellidae). Phytoparasitica, 37: 35-41.
Bayoumy, M. H. 2011. Foraging behavior of the coccinellid Nephus includens (coleoptera: Coccinellidae) in response to Aphis gossypii (hemiptera: Aphididae) with particular emphasis on larval parasitism. Environmental Entomology, 40( 4): 835-843.
Bayoumy, M.H. and Awadalla, H.S. 2018. Foraging responses of Coccinella septempunctata, Hippodamia variegata and Chrysoperla carnea to changing in density of two aphid species. Biocontrol Science and Technology, 28: 226-241.
Begon, M., Mortimer, M. and Thompson, D. 1996. Population ecology, a unified study of animals and plants, (3rd ed.), Liverpool, Blackwell Science. 247 pp.
Berry, J. S., Holtzer, T. O., Innis, G. S. and Logan, J. A. 1988. Simple order of prey preference technique for modelling the predator functional response. Experimental Applied of Acarology, 5: 207-224.
Biranvand, Amir, Nedvěd, O., Nattier, R., Nepaeva, E. and Haelewaters, D. 2021. Review of the genus Hippodamia (Coleoptera: Coccinellidae) in the Palearctic region. Oriental Insects, 55(2): 293-304.
Blackman, R. & Eastop, V. 2016. Aphids on the World’s Plants: An online identification and information guide. Available from: http://www.aphidsonworldsplants.info/(accessed 2019.06.15).
Davoodi dehkordi, S., Sahragard, A. and Hajizadeh, J. 2012. Comparison of Functional Response of two and one individual female predator, hippodamia variegata goeze (coleoptera: coccinellidae) to different densitiesof Aphis gossypii glover (hemiptera: aphididae) under laboratory conditions. Munis Entomology and Zoology, 7( 2): 998-1005.
Davoodi Dehkordi, S. and Sahragard, A. 2013. Functional Response of Hippodamia variegata (Coleoptera: Coccinellidae) to Different Densities of Aphis gossypii (Hemiptera: Aphididae) in an Open Patch Design. Journal of Agriculture and Science Technology, 15: 651-659.
El-Hag, E. A. and Zaitoon, A. A. 1996. Biological Parameters for Four Coccinellid Species in Central Arabia. Biological control, 7: 316-319.
Farhadi, R., Allahyari, H. and Juliano, S. A. 2010. Functional Response of Larval and Adult Stages of Hippodamia variegata (Coleoptera: Coccinellidae) to Different Densities of Aphis fabae (Hemiptera: Aphididae). Environmental Entomology, 39: 1586-1592.
Favret, C., Meshram, N. M., Miller, G. L., Nieto Nafria, J. M., and Stekolshchikov, A. V. 2017. The mealy plum aphid and its congeners: A synonymic revision of the Prunus-infesting aphid genus Hyalopterus (Hemiptera: Aphididae). Proceedings of the Entomological Society of Washington, 119:565-574.
Feng, Y., Zhou, Z-X., An, M-R., Yu, X-L. and Liu, T-X. 2018. The effects of prey distribution and digestion on functional response of Harmonia axyridis (Coleoptera: Coccinellidae). Biological Control, doi: https://doi.org/10.1016/j.biocontrol.2018.04.009.
Ghorbali, R. Seyedoleslami, H., Rezwani, A. and Khajehali, J. 2008. Seasonal Population Fluctuation of Brachycaudus amygdalinus (Schout.) and Hyalopterus amygdali (Blanch.) on Almond Trees in Najafabad Region. Journal of Crop Production and Processing, 11(42): 259-249.
Hassell, M.P. 2000. The spatial and temporal dynamics of host parasitoid interactions. Oxford, Oxford University Press. 212 pp.
Holling, C.S. 1959. Some characteristics of simple types of predation and parasitism. The Canadian Entomologist, 91: 385-398.
Holling, C. S. 1965. The functional response of predators to prey density and its role in mimicry and population regulation. Memoirs of the Entomological Society of Canada, 45: 1-60.
Houck, M.A. and Strauss, R.E. 1985. The comparative study of functional responses: experimental design and statistical interpretation. The Canadian Entomologist, 117: 617-629.
Hodek, I. and Honk A. 1996. Effectiveness and utilization. In: Hodek, I. and Honk, A. (Eds.), Ecology of Coccinellidae. Kluwer Academic, Dordrecht. pp. 351-389.
Jalali, M.A., Tirry, L. and De clercq, P. 2010. Effect of temperature on the functional response of Adalia bipunctata to Myzus persicae. BioControl, 55: 261-269.
Juliano, S. 2001. Nonlinear curve fitting: predation and functional response curves. In: Scheiner, S. M. and Gurevitch, J. (eds), Design and analysis of ecological experiments. Chapman and Hall, New York. pp. 178-196.
Kalinoski, R.M. and DeLong, J.P. 2016. Beyond body mass: How prey traits improve predictions of functional response parameters. Oecologia, 180, 543-550.
Khan, A.A. and Mir, R.A. 2008. Functional response of four predaceous coccinellids, Adalia tetraspilota (Hope), Coccinella septempunctata L., Calvia punctata (Mulsant) and Hippodamia variegata (Goeze) feeding on green apple aphid, Aphis pomi De Geer (Homoptera: Aphididae). Biological Control, 22: 291-298.
Kindlmann, P. and Dixon, A.F.G. 2001. When and why top-down regulation fails in arthropod predator-prey systems. Basic and Applied Ecology, 2: 333-340.
Kontodimas, D.C. and Stathas, G.J. 2005. Phenology, fecundity and life table parameters of the predator Hippodamia variegata reared on Dysaphis crataegi. Biocontrol, 50: 223-233.
Madadi, H., Mohajeri Parizi, E., Allahyari, H. and Enkegaard, A. 2011. Assessment of the biological control capability of Hippodamia varigata (Col: Coccinellidae) using functional response experiments. Journal of Pest Science, 84: 447-455.
Madbouni, M.A.Z., Samih, M.A., Namvar, P. and Biondi, A. 2017. Temperature-dependent functional response of Nesidiocoris tenuis (Hemiptera: Miridae) to different densities of pupae of cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), European Journal of Entomology. 114, 325–331.
Martinou, A.F., Raymond, b., Milonas, P.G. and Wright, D.J. 2010. Impact of intraguild predation on parasitoid foraging behaviour. Ecological Entomology, 35: 183-189.
Moura, R., Garcia, P., Cabral, S. and Soares, A.O. 2006. Does pirimicarb affect the voracity of the euriphagous predator, Coccinella undecimpunctata L. (Coleoptera: Coccinellidae)? Biological Control, 38: 363-368.
Murdoch, W.W. 1969. Switching in General Predators: Experiments on predator specificity and stability of prey populations. Ecological Monographs, 39: 335-354.

Obrycki, J. J. and Kring, T. J. 1998. Predaceous Coccinellidae in biological control. Annual Review of Entomology, 43: 295-321.
Orr, C. J. and Obrycki, J. J. 1990. Thermal and Dietary Requirements for Development of Hippodamia parenthesis (Coleoptera: Coccinellidae). Environmental Entomology, 19: 1523-1527.
Papanikolaou, N. E., Martinou, A.F., Kontodimas, D. C., Matsinos, Y.G. and Milonas, P.G. 2011. Functional responses of immature stages of Propylea quatuordecimpunctata (Coleoptera: Coccinellidae) to Aphis fabae (Hemiptera: Aphididae), European Journal of Entomology, 108: 391-395.
Pervez, A., Awasthi, P. and Bozdogan, H. 2019. Biological Control of Aphis craccivora (Koch) with Predaceous Ladybird, Hippodamia variegata (Goeze). Indian Journal of Ecology. 46(7): 141-144.
Rechiţean, D., Grozea, I. and Vîrteiu, A. M. 2021. OCCURRENCE AND BIODIVERSITY CHARACTERISATION OF INSECT PESTS FROM AN OLD ALMONDS ORCHARD IN WESTERN ROMANIA. Research Journal of Agricultural science, 53(3).‌
Rezwani, A. 2001. Key to the aphids (Homoptera: Aphidinea) in Iran. Agricultural Research, Education and Extension Organization, Tehran (In Persian).
Rezwani, A. 2010. Aphids (Hemiptera: Aphidoidea) of herbaceous plants in Iran. Publications of Entomological Society of Iran (In Persian).
Rogers, D. 1972. Random predator search and insect population models. Journal of Animal Ecology, 41: 369-383.
SAS. 2004. SAS User’s Guide Statistics. Cary, NC: SAS Inst., Inc.
Seyfollahi, F., Esfandiari, M., Mossadegh, M.S. et al. 2019. Functional Response of Hyperaspis polita (Coleoptera, Coccinellidae) to the Recently Invaded Mealybug Phenacoccus solenopsis (Hemiptera, Pseudococcidae). Neotropical Entomology, 48: 484-495.
Solomon, M.E. 1949. The natural control of animal populations. Journal of Animal Ecology, 18: 1-35.
Timms, J. E., Oliver, T. H., Straw, N. A. and Leather, S. R. 2008. The effects of host plant on the coccinellid functional response: Is the conifer specialist Aphidecta obliterata (L.) (Coleoptera: Coccinellidae) better adapted to spruce than the generalist Adalia bipunctata (L.) (Coleoptera: Coccinellidae)?. Biological Control, 47: 273-281.
Van Lenteren, J.C. and Bakker, K. 1975. Functional responses in invertebrates. Netherlands Journal of Zoology, 26, 567–572.
Van Lenteren, J.C. 2012. The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl, 57: 1-20.
Veeravel, R. and Baskaran, P. 1997. Functional and numerical responses of Coccinella transversalis Fab and Cheilomenes sexmaculata Fab feeding on the melon aphid, Aphis gossypii Glov. Insect Science and its Application, 17: 335-339.
Xue, Y., Bahlai, C.A., Frewin, A., Sears, M.K., Schaafsma, A.W. and Hallett, R.H. 2009. Predation by Coccinella septempunctata and Harmonia axyridis (Coleoptera: Coccinellidae) on Aphis glycines (Homoptera: Aphididae). Environmental Entomology, 38: 708-714.
Zarghami, S., Mossadegh, M. S., Kocheili, F., Allahyari, H., and Rasekh, A. 2021. Age-specific functional response of Nephus arcuatus (Col.: Coccinellidae), predator of Nipaecoccus viridis (Hem.: Pseudococcidae). Plant Protection (Scientific Journal of Agriculture), 44(3): 75-89.