Population genetic structure of Ustilago maydis in Iran

10.48311/jcp.2022.1612
Volume 11, Issue 4
December 2022
Pages 495-507

Document Type : Original Research

Authors

Plant Disease Research Department, Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran.

Abstract


The fungus Ustilago maydis causes common smut disease in corn. Under favorable conditions, it can cause severe damage to corn. In this study, the genetic structure of U. maydis populations in Iran from the most corn-growing regions of seven provinces, including Ardebil, Fars, Isfahan, Kerman, Kermanshah, Khuzestan, and Qazvin, was evaluated using rep-PCR with primers; BOX, ERIC, and REP. Rep-PCR reactions with 109 isolates of U. maydis produced seven distinct clusters consistent with their geographical origin with few exceptions. The results of AMOVA revealed significant genetic differences within and between pathogen populations. The Euclidean similarity coefficient and the UPGMA algorithm indicate five distant clusters based on the disease severity index. The mean comparison of the disease severity index grouped target isolates into 18 clades using the Tukey test. Our findings showed that the pathogenicity assay-based grouping was not consistent with those of the geographical origin of the isolates nor their genetic similarity.

Keywords

Subjects
Barnes, C. H. W., Szabo, L. J., May, G. and Groth, J. V. 2004. Inbreeding levels of two Ustilago maydis populations. Mycologia, 96: 1236-1244.
Choukan, R., Zamani, M and Ghaed Rahmat, M. 2007 Study on Heritance of Resistance to Common Smut in Maize. Seed and Plant 24: 17-32.
Christensen, J. J. 1963. Corn Smut Caused by Ustilago maydis (Am. Phytopathol. Soc., Saint Paul, MN), Monogr. 2.
Darino, M., Chia, K. S., Marques, J., Aleksza, D., Soto-Jimenez, L. M., Saado, I., Uhse, S., Borg, M., Betz, R., Bindics, J., Zeinkiewicz, K., Feussner, I., Petit-Houdenot, Y.and Djamei, A. 2021. Ustilago maydis effector Jsi interacts with Topless corepressor, hijacking plant jasmonate/ethylene signaling. New phytologist, 229: 3393-3407.
Dice, L. R. 1945. Measures of the amount of ecologic association between species. Ecology, 26: 297- 302.
Karaoglu, H, Lee, C. M. Y. and Meyer, W. 2005. Survey of simple repeats in completed fungal genomes. Molecular biology and evolution, 22, 639-649.
Kellner, R., Hanschke, C. and Begerow, D. 2014. Patterns of Variation at Ustilago maydis Virulence Clusters 2A and 19A Largely Reflect the Demographic History of Its Populations. PLoS ONE 9(6): e98837. doi:10.1371/journal.pone.0098837
Ludwig, N., Reissmann, S., Schipper, K., Gonzalez, C., Assmann, D., Glatter, T., Moretti, M., Ma, L. S., Rexer, K. H., Snetselaar, K. and Kahmann, R. 2021. A cell surface-exposed protein complex with an essential virulence function in Ustilago maydis. Nature microbiology 6, 722-730. 
McDonald, B. A. 1997. The population genetics of fungi: tools and techniques. Phytopathology, 87: 448- 453.
McDonald, B. A. and Linde, C. 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annual review of phytopathology, 40: 349–79.
McDonald, B. A., Miles, J., Nelson, L. R. and Pettway, R. E. 1994. Genetic variability in nuclear DNA in field population of Stagonospora nodorum. Phytopathology, 84: 250- 255.
Mehrian, F. 1982. Occurance of corn Common Smut in Iran. Iranian journal of plant pathology, 1-4: 46-50.
Menzies, J. G., Bakkeren, G., Matheson, F., Procunier, J. D. and Woods, S. 2003. Use of inter-simple sequence repeats and amplified fragment length polymorphisms to analyze genetic relationships among small grain-infecting species of Ustilago. Phytopathology, 93:167-175.
Mueller, E. M., Bahnweg, G., Sandermann, H. and Geiger, H. H. 1992. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic acids research, 20: 6115-6116.
Mueller, A. N., Ziemann, S., Treitschke, S., Assmann, D. and Doehlemann, G. 2013. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS pathogens, 9: e1003177.
Munkacsi, A. B., Kawakami, S., Pan, J. J., Lee, K., Stoxen, S., Hang, J. and May, G. 2006. Genome-wide assessment of tandem repeat markers for biogeographical analyses of the corn Smut fungus, Ustilago maydis. Molecular ecology notes, 6: 221–223.
Munkacsi, A. B., Stoxen, S. and May, G. 2008. Ustilago maydis populations tracked maize through domestication and cultivation in the Americas. Proceedings of the Royal Society B: Biological Sciences, 275: 1037- 1046.
Nei, M. 1973. Analysis of gene diversity in subdivided populations. The Proceedings of the National Academy of Sciences, 70: 3321–3323.
Peakall, R. and Smouse, P. E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular ecology notes, 6: 288-295.
Pope, D. D. and McCarter, S. M. 1992. Evaluation of inoculation methods for inducing Common Smut on corn ears. Phytopathology, 82: 950-955.
Rizzi, Y. S., Happel, P., Lenz, S., Urs, M. J., Bonin, M., Cord-Landwehr, S., Singh, R., Moerschbacher, B. M. and Kahmann, R. 2021. Chitosan and chitin deacetylase activity are necessary for development and virulence of Ustilago maydis. mBio 12: e03419-20. https://doi .org/10.1128/mBio.03419-20
Saleh, F. M., El-Defrawy, M. M., Abdou, R. F. and Mohammed, A. F. 2006. Genetic variability at the b-mating type locus in Ustilago maydis in Egypt and its molecular identification. Assiut Journal of Agricultural Sciences, 37: 153- 170.
Sanchez-Alonso, P., Valverde, M. E., Paredez-Lopez, O. and Guzman, P. 1996. Detection of genetic variation in Ustilago maydis strains by probes derived from telomeric sequences. Microbiology, 142: 2931-2936.
Schweizer, G., Haider, M. B., Barroso, G. V., Rossel, N., Munch, K., Kahmann, R. and Dutheil, J. Y. 2021. Population genomics of the Maize pathogen Ustilago maydis: demographic history and role of virulence clusters in adaptation. Genome Biology and Evolution, 13: 1-17.
Thakur, R. P., Leonard, K. J. and Pataky, J. K. 1989. Smut gall development in adult corn plants inoculated with Ustilago maydis. Plant disease, 73: 921-925.
Valverde, M., Vandemark, G., Martinez, O. and Paredes-Lopez, O. 2000. Genetic diversity of Ustilago maydis strains. World Journal of Microbiology and Biotechnology, 18: 49 – 55.
Versalovic, J., Schneider, M., de bruijn, F. J. and Lupski, J. R. 1994. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular and Cellular Biology, 5: 25-40
Weiland, P. and Altegoer, F. 2021. Identification and characterization of two transmembrane proteins required for virulence of Ustilago maydis. Frontiers of plant science, 12: 669835.
Yeh, F. C., Yang, R. C. and Boyle, T. 1999. POPGENE version 1.31. Microsoft Window-based Freeware for Population Genetic Analysis. Quick User Guide. A joint Project Development by University of Alberta and the Centre for International Forestry Research.28 pages.
Zambino, P., Groth, J. V., Lukens, L., Garton, J. R. and May, G. 1997. Variation at the b mating type locus of Ustilago maydis. Phytopathology, 87:1233-1239.
Zhang, M., Chen, Y., Yuan, J. and Meng, Q. 2015. Development of genomic SSR markers and analysis of genetic diversity of 40 haploid isolates of Ustilago maydis in China. International Journal of Agriculture and Biology, 17: 369-374.