Diversity of coleopteran-specific cry genes of Bacillus thuringiensis strains isolated from soil of some east and south regions of Iran

10.48311/jcp.2022.1610
Volume 11, Issue 4
December 2022
Pages 467-480

Document Type : Original Research

Authors

1 Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran.

2 Department of Biodiversity, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

Abstract


Isolates were identified by molecular and morphological tests, including coleopteran-specific cry genes in the Iranian native Bacillus thuringiensis collection. Spherical and irregular shapes were observed to be the most frequent shapes using Coomassie brilliant blue staining. PCR analysis with universal and specific primer pairs was used to detect coleopteran-specific cry genes such as cry1I, cry3, cry7, cry18, and cry26. All the isolates contained at least one active coleopteran-cry gene, while the most abundant isolates had cry26 and cry18 genes. The patterns of protein size were characterized in addition to their insecticidal activity against third-instar larvae of Tribolium castaneum. Protein profiles produced bands that varied from 14-180 kDa. Four native isolates containing coleopteran-active cry genes displayed higher activity against T. castaneum larvae than B. thuringiensis subspecies galleriae as a reference strain. The median lethal concentration (LC50) of the most pathogenic isolate, PS1078, was 2.72 × 106 spores/ml. Its 16S rDNA gene sequence analysis demonstrated similarity to B. thuringiensiss subspecies galleriae. The characterization of isolates provided useful data for selecting new isolates to expand novel bio-insecticidal products.

Keywords

Anitha, D., Kumar, N. S., Vijayan, D., Ajithkumar, K. and Gurusubramanian, G. 2011. Characterization of Bacillus thuringiensis isolates and their differential toxicity against Helicoverpa armigera populations. Journal of Basic Microbiology, 51: 107-114.
Arrieta, G., Hernández, A. and Espinoza, A. M. 2004. Diversity of Bacillus thuringiensis strains isolated from coffee plantations infested with the coffee berry borer Hypothenemus hampei. Revista de Biologia Tropical, 52 (3): 757-764.
Banik, A., Chattopadhyay, A., Ganguly, S. and Mukhopadhyay, S. K. 2019. Characterization of a tea pest specific Bacillus thuringiensis and identification of its toxin by MALDI-TOF mass spectrometry. Industrial Crops and Products, 137: 549–556.
Bergvinson, D. and García-Lara, S. 2004. Genetic approaches to reducing losses of stored grain to insects and diseases. Current Opinion in Plant Biology, 7: 480-485.
Carrière, Y., Sisterson, M. S. and Tabashnik, B. E. 2004. Resistance management for sustainable use of Bacillus thuringiensis crops in integrated pest management. In: Insect Pest Management. pp. 65–95.
Carvalho, K. S. de, Barbosa, T. A. N., Lana, U. G. de P. and Valicente, F. H. 2020. Selection and molecular characterization of Bacillus thuringiensis strains efficient against soybean looper (Chrysodeixis includens) and Spodoptera species. Revista Brasileira de Entomologia, 64 (4). doi.org/10.1590/1806-9665-rbent-2020-0080
Cinar, C., Apaydin, O., Yenidunya, A. F., Harsa, S. and Gunes, H. 2008. Isolation and characterization of Bacillus thuringiensis strains from olive-related habitats in Turkey. Journal of Applied Microbiology, 104 (2): 515–525.
Da Costa, P. B., Granada, C. E., Ambrosini, A., Moreira, F., De Souza, R., Dos Passos, J. F. M., Arruda, L. and Passaglia, L. M. P. 2014. A model to explain plant growth promotion traits: A multivariate analysis of 2,211 bacterial isolates. PLos One, 9 (12): doi.org/10.1371/journal.pone.0116020
da Silva, N., Thuler, A. M. G., de Abreu, I. L., Davolos, C. C., Polanczyk, R. A. and Lemos, M. V. F. 2010. Characterization and selection of Bacillus thuringiensis isolates effective against Sitophilus oryzae. Scientia Agricola, 67 (4):472-478.
Domínguez-Arrizabalaga, M., Villanueva, M., Escriche, B., Ancín-Azpilicueta, C. and Caballero, P. 2020. Insecticidal activity of Bacillus thuringiensis proteins against coleopteran pests. Toxins. 12: 430.
Doolotkeldieva, T., Leclerque, A., Bobusheva, S. and Schuster, C. 2018. Biodiversity of Bacillus thuringiensis strains and their Cry genes in ecosystems of Kyrgyzstan. Advances in Bioscience and Biotechnology, 9: 107-126.
Elgizawy, K. K. and Ashry, N. M. 2019. Efficiency of Bacillus thuringiensis strains and their Cry proteins against the Red Flour Beetle, Tribolium castaneum (Herbst.) (Coleoptera: Tenebrionidae). Egyptian Journal of Biological Pest Control, 29: 1-9.
El-Kersh, T. A., Ahmed, A. M., Al-Sheikh, Y. A., Tripet, F., Ibrahim, M. S. and Metwalli, A. A. M. 2016. Isolation and characterization of native Bacillus thuringiensis strains from Saudi Arabia with enhanced larvicidal toxicity against the mosquito vector Anopheles gambiae. Parasites and Vectors, 9: 1-14.
Fagundes, R., Picoli, E., Lana, U. and Valicente, F. 2011. Plamsmid patterns of efficient and ineffecient strains of Bacillus thruingiensis against Spodoptera frugiperda (Lepidoptera: Noctuidae). Neotropical Entomology, 40 (5): 600–606.
Fakhrudin, B., Badariprasad, K. B., Krishnareddy, S. H., Prakash, V. B. and Patil, K. H. M. 2003. Insecticide resistance in cotton bollworm, Helicoverpa armigera (Hubner) in South Indian cotton ecosystems. Resistant Pest Management Newsletter, 12 (2): 13–16.
Gorashi, N. E., Tripathi, M., Kalia, V. and Gujar, G. T. 2014. Identification and characterization of the sudanese Bacillus thuringiensis and related bacterial strains for their efficacy against Helicoverpa armigera and Tribolium castaneum. Indian Journal of Experimental Biology, 52 (6): 637–649.
Guneş, H., Alper, M., Bekir, C. O. L., and Tunca, H. 2016. Bioactivities of cry gene positive Bacillus thuringiensis (Berliner) (Bacillales: Bacillaceae) strains on Ephestia kuehniella Zeller, 1879 and Plodia interpunctella (Hübner, 1813) (Lepidoptera: Pyralidae). Turkiye Entomoloji Dergisi, 40 (4). doi.org/10.16970/ted.62135
Haggag, K. H. E. and Yousef, H. M. A. 2010. Differentiation among Egyptian Bacillus thuringiensis strains at sporulation by whole cellular protein profiles. World Journal of Agricultural Sciences, 6: 224-233.
Khodabandeh, F., Safaralizadeh, M. H., Safavi, S. A. and Aramideh, S. 2014. Virulence of some native Bacillus thuringiensis isolates against Ephestia kuehniella (Zeller) (Lep., Pyralidae) and Pieris brassicae (Lep., Pieridae) larvae isolated from stored products of Urmia city. Archives of Phytopathology and Plant Protection, 47: 610-614.
Konecka, E., Baranek, J., Hrycak, A. and Kaznowski, A. 2012. Insecticidal activity of Bacillus thuringiensis strains isolated from soil and water. The Scientific World Journal, 1-5.
Li, H., Liu, R., Shu, C., Zhang, Q., Zhao, S., Shao, G., Zhang, X. and Gao, J. 2014. Characterization of one novel cry8 gene from Bacillus thuringiensis strain Q52-7. World Journal of Microbiology and Biotechnology, 30: 3075-3080.
Mohan, M. and Gujar, G. T. 2002. Geographical variation in larval susceptibility of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis spore–crystal mixtures and purified crystal proteins and associated resistance development in India. Bulletin of Entomological Research, 92: 489-498.
Monnerat, R. G., Batista, A. C., de Medeiros, P. T., Martins, É. S., Melatti, V. M., Praça, L. B., Dumas, V. F., Morinaga, C., Demo, C., Gomes, A. C. M., Falcão, R., Siqueira, C. B., Silva-Werneck, J. O. and Berry, C. 2007. Screening of Brazilian Bacillus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis. Biological Control, 41: 291-295.
Mukhija, B. and Khanna, V. 2018. Cry Protein Profiling of Bacillus thuringiensis Isolated from Different Agro-Climate Soils of Punjab. International Journal of Current Microbiology and Applied Sciences, 7: 2866-2870.
Nazarian, A., Jahangiri, R., Jouzani, G. S., Seifinejad, A., Soheilivand, S., Bagheri, O., Keshavarzi, M. and Alamisaeid, K. 2009. Coleopteran-specific and putative novel cry genes in Iranian native Bacillus thuringiensis collection. Journal of Invertebrate Pathology, 102: 101–109.
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. and Minh, B. Q. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32 (1): 268–274.
Pérez-Guerrero, S., Aldebis, H. K. and Vargas-Osuna, E. 2011. Toxicity of several δ-endotoxins of Bacillus thuringiensis against the cotton pest Earias insulana (Lepidoptera: Noctuidae). Crop Protection, 30: 1024-1027.
Pooja, A. S., Krishnaraj, P. U. and Prashanthi, S. K. 2013. Profile of cry from native Bacillus thuringiensis isolates and expression of cry1I. African Journal of Biotechnology, 12, doi.org/10.4314/ajb.v12i22
Poutanen, K. 2012. Past and future of cereal grains as food for health. Trends in Food Science and Technology, 25: 58-62.
Rajashekhar, M., Mittal, A., Dharavath, V. and Kalia, V. K. 2018. Potential of Native Bacillus thuringiensis Strains against Cotton Aphid, Aphis gossypii Glover. Pesticide Research Journal, 30: 24-30.
Rajchanuwong, P., Chanpaisaeng, J. and Kaewsompong, S. 2019. Characterization and toxicity of Bacillus thuringiensis serovar chanpaisis (H46): A serovar from Thailand. Songklanakarin. Journal of Science and Technology, 41: 804-812.
Renganathanbr, K., Rathinambr, X. and Subramaniam, M. 2011. Quick isolation and characterization of novel Bacillus thuringiensis strains from mosquito breeding sites in Malaysia. Emirates Journal of Food and Agriculture, 23: 17-26.
Rizwana, R. 2014. Study of combined effect of locally isolated Bacillus thuringiensis and turmeric powder on red flour beetle (Tribolium castaneum). International Journal of Current Microbiology and Applied Sciences, 3 (4): 760–773.
Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular Cloning: a Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R. and Dean, D. H. 1998. Bacillus thuringiensis and Its Pesticidal Crystal Proteins. Microbiology and Molecular Biology Reviews, 62 (3): 775–806.
Seifinejad, A., Jouzani, G. R. S., Hosseinzadeh, A. and Abdmishani, C. 2008. Characterization of Lepidoptera-active cry and vip genes in Iranian Bacillus thuringiensis strain collection. Biological Control, 44 (2): 216–226.
Taban, A., Saharkhiz, M. J. and Hooshmandi, M. 2017. Insecticidal and repellent activity of three Satureja species against adult red flour beetles, Tribolium castaneum (Coleoptera: Tenebrionidae). Shengtai Xuebao/ Acta Ecologica Sinica, 37: 201-206.
Travers, R. S., Martin, P. A. W. and Reichelderfer, C. F. 1987. Selective Process for Efficient Isolation of Soil Bacillus spp. Applied and Environmental Microbiology, 53:1263-1266.
Upadhyay, R. K. and Ahmad, S. 2011. Management strategies for control of stored grain insect pests in farmer stores and public ware houses. World Journal of Agricultural Sciences, 7: 527-549.
Valicente, F. H. and da Silva, R. B. 2017. Characterization of Bacillus thuringiensis using plasmid patterns, AFLP and Rep-PCR. Bacillus thuringiensis and Lysinibacillus sphaericus: Characterization and use in the Field. Biocontrol, doi.org/10.1007/978-3-319-56678-8_6
Weston, P. A. and Rattlingourd, P. L. 2000. Progeny production by Tribolium castaneum (Coleoptera: Tenebrionidae) and Oryzaephilus surinamensis (Coleoptera: Silvanidae) on maize previously infested by Sitotroga cerealella (Lepidoptera: Gelechiidae). Journal of Economic Entomology,a 93: 533-536.
Yilmaz, S., Ayvaz, A., Akbulut, M., Azizoglu, U. and Karabörklü, S. 2012. A novel Bacillus thuringiensis strain and its pathogenicity against three important pest insects. Journal of Stored Products Research, 51: 33–40.
Yilmaz, S., Ayvaz, A. and Azizoglu, U. 2017. Diversity and distribution of cry genes in native Bacillus thuringiensis strains isolated from wild ecological areas of East-Mediterranean region of Turkey. Tropical Ecology, 58: 605-610.
Yu, Z., Gong, L., Li, Q., Huang, G., He, L., Li, P. and Zheng, A. 2015. Diversity of insecticidal crystal protein genes of Bacillus thuringiensis isolated from soil and cloning of novel haplotypes of cry genes. Annals of Microbiology, 65: 2179-2186.
Zorzetti, J., Ricietto, A. P. S., Fazion, F. A. P., Meneghin, A. M., Neves, P. M. O. J., Vilas-Boas, L. A. and Vilas-Bôas, G. T. 2018. Isolation, morphological and molecular characterization of Bacillus thuringiensis strains against Hypothenemus hampei Ferrari (Coleoptera: Curculionidae: Scolytinae). Revista Brasileira de Entomologia, 62: 198-204.