Investigating the physiological and morphological responses of Cucumis sativus to Phelipanche aegyptiaca parasitism

Volume 11, Issue 3
September 2022
Pages 345-359

Document Type : Original Research

Authors

1 Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, 9177948974, Mashhad, Iran.

2 Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, 84156-83111, Isfahan, Iran.

3 Institute for sustainable agriculture (CSIC), Cordoba, Spain.

Abstract
A greenhouse experiment was conducted to examine the influence of Phelipanche aegyptiaca on vegetative growth, rate of photosynthesis, chlorophyll fluorescence and leaf chlorophyll content of 35 cucumber genotypes. High demand of assimilates by P. aegyptiaca caused significant reductions in shoot and root dry weight, leaf number, leaf area and plant height in all cucumber genotypes. Once plants were infected by P. aegyptiaca, the leaf chlorophyll content, the photosynthesis rate and the maximum quantum yield of PSII chemistry were significantly less than control, thus implying a reduction in carbon assimilation, photosynthesis efficiency and susceptibility of infected plants to photoinhibition. P. aegyptiaca traits were significantly affected by cucumber genotypes. There was no correlation between P. aegyptiaca traits with the reduction percentage of cucumber shoot dry weight. However, there were correlations between underground attachments number plant-1 (UAN) and percentage of cucumber root dry weight reduction (-0.58), total attachment number plant -1 (TAN) and the percentage of reduction of root dry weight (+0.39). In accordance with the results obtained, the genotypes were classified into 3 groups. It was demonstrated that the genotype number 22 (Khassib) behaved differently to other genotypes and, in particular, they suffered less damage from the presence of P. aegyptiaca.

Keywords

Subjects
Bardaro, N., Marcotrigiano1, A. R., Bracuto1, V., Mazzeo1, R., Ricciardi, F., Lotti, C., Pavan1, S. and Ricciardi, L. 2016. Genetic analysis of resistance to Orobanche crenata (Forsk.) in pea (Pisum sativum L.) low-straigolactone line. Journal of Plant Pathology, 98 (3): 671-675. https://www.jstor.org/stable/44280520
Barker, E. R., Press, M. C., Scholes, J. D. and Qick, W.P. 1996. Interactions between the parasitic angiosperm Orobanche aegyptiaca and its tomato host: growth and biomass allocation. New Phytologist, 133: 637–642. https://doi.org/10.1111/j.1469-8137.1996.tb01932.x
Buschmann, H., Komle, S., Gonsior, G. and Sauerborn, J. 2005. Susceptibility of oilseed rape (Brassica napus ssp. napus) to branched broomrape (Orobanche ramosa L). Journal of Plant Diseases and Protection, 112 (1): 65–70. https://www.jstor.org/stable/43215624
Dale, H. and Press, M. C. 1998. Elevated atmospheric CO2 influences the interaction between the parasitic angiosperm Orobanche minor and its host Trifolium repens. New Phytologist, 140: 65–73. https://doi.org/ 10.1046/j.1469-8137.1998. 00247.x
Demirbaş, S. and Acar, O. 2017. Physiological and biochemical defence reactions of Arabidopsis thalana to Phelipanche ramosa infection and salt stress. Fresenius Environmental Bulletin, 26(3): 2275–2282
Eizenberg, H., Colquhoun, J. B. and Mallory-Smith, C. A. 2004a. The relationship between temperature and small broomrape (Orobanche minor) parasitism in red clover. Weed Science, 52: 735–741. https://doi.org/10.1614/WS-03-157R
Eizenberg, H., Colquhoun, J. B. and Mallory-Smith, C. A. 2003. Variation in clover response to small broomrape (Orobanche minor). Weed Science, 51: 759–763. https://doi.org/10.1614/WS-03-029R
Eizenberg, H., Aly, R. and Cohen, Y. 2012. Technologies for smart chemical control of broomrape (Orobanche spp. and Phelipanche spp.). Weed Science, 60: 316–323. https://doi.org/10.1614/WS-D-11-00120.1
El-Halmouch, Y., Benharrat, H. and Thalouarn, P. 2006. Effect of root exudates from different tomato genotypes on broomrape (O. aegyptiaca) seed germination and tubercle development. Crop Protection, 25: 501–507. 10.1016/j.cropro.2005.08.005
Ephrath, J. E., Hershenhorn, J., Achdari, G., Bringer, S. and Eizenberg, H. 2012. The use of sigmoid equations for the detection of the initial parasitism phase of Phelipanche aegyptiaca in tomato. Weed Science, 60: 57–63. https://doi.org/10.1614/WS-D-11-00070.1
FAO (Food and Agriculture organization). 2017. FAOSTAT. Available on-line with updates at http://www.fao.org/faostat/en/#data/QC.
Fernandez-Martinez, J. M., Dominguez, J., Perez-Vich, B. and Velasco, L. 2008. Update on breeding for resistance to sunflower broomrape. Helia, 31: 73–84. https://doi.org/10.2298/hel0848073f
Goldwasser, Y. and Kleifeld, Y. 2004. Recent approaches to Orobanche management – a review. In Inderjit (ed) Weed biology and management. Kluwer Academic, Dordrecht, 439–466. https://doi.org/10.1007/s11627-007-9054-5
Goldwasser, Y. and Kleifeld, Y. 2002. Tolerance of parsley varieties to Orobanche. Crop Protection, 21: 1101–1107. https://doi.org/10.1016/S0261-2194(02)00066-2
Goldwasser, Y., Hershenhorn, J., Plakhine, D., Kleifeld, Y. and Rubin, B. 1999. Biochemical factors involved in vetch resistance to Orobanche aegyptiaca. Physiological and Molecular Plant Pathology, 54: 87–96. https://doi.org/10.1006} anbo.1999.1029
Gevezova, M., Dekalska, T., Stoyanov, K., Hristeva, T., Kostov, K., Batchvarova, R. and Denev, I. 2012. Recent advances in Broomrape’s research. Bioscience, Biotechnology, and Biochemistry, 1: 91–105. ISSN: 1314-6246
Graves, J. D., Press, M. C. and Stewart, G. R. 1989. A carbon balance model of the sorghum–Striga hermonthica host–parasite association. Plant Cell Environment, 12: 101–107. https://doi.org/10.1111/j.1365-3040.1989.tb01921.x
Grenz, J. H., Manschadi, A. M., Uygurc, F. N. and Sauerborn, J. 2005. Effects of environment and sowing date on the competition between faba bean (Vicia faba) and the parasitic weed Orobanche crenata. Field Crops Research, 93: 300–313. https://doi.org/10.1016/j.fcr.2004.11.001
Haidar, M. A. and Sidahmed, M. M. 2003. Response of branched broomrape (Orobanche ramosa) growth and development to various soil amendments in potato. Crop protection, 25: 291-294. https://doi.org/10.1016/S0261-2194(02)00150-3
Haidar, M. A. and Sidahmed, M. M. 2006. Elemental sulphur and chicken manure for the control of branched broomrape (Orobanche ramosa). Crop protection, 25: 47-51. https://doi.org/10.1016/j.cropro.2005.03.022
Hershenhorn, J., Eizenberg, H., Dor, E., Kapulnik, Y. and Goldwasser, Y. 2009. Phelipanche aegyptiaca management in tomato. Weed Research, 49: 34-47. https://doi.org/ 10.1111/j.1365-3180.2009. 00739.x
Hoagland, D. R. and Arnon, D. I. 1983. The water-culture method for growing plants without soil. University of California college of agriculture, Agricultural experiment station Berkeley, California.
Höniges, A., Wegmann, K. and Ardelean, A. 2008. Orobanche resistance in sunflower. Helia, 31 (49): 1-12. https://doi.org/ 10.2298/HEL0849001H
Hosseini-Faradonbeh, N., Izadi-darbandi, E., Karimmojeni, H. and Nezami, A.2020. Physiological and growth responses of cucumber (Cucumis sativus L.) genotypes to P. aegyptiaca (Phelipanche aegyptiaca (Pers.) Pomel) parasitism. Acta Physiologiae Plantarum, 42 (8): 140-155. https://doi.org/10.1007/s11738-020-03127-8
Hosseini-Faradonbeh, N., Izadi-darbandi, E., Karimmojeni, H. and Nezami, A. 2021. The morphological and physiological traits of Cucumis sativus- Phelipanche aegyptiaca association affected by arbuscular mycorrhizal fungi symbiosis. Journal of Crop Protection, 10 (4): 669-684.
Irving, L. J. and Cameron, D. D. 2009. You are what you eat: interactions between root parasitic plants and their hosts. Advances in Botanical Research, 50: 87–138. https://doi.org/10.1016/S0065-2296(08)00803-3
Jiang, F., Jeschke, W., Hartung, W. and Cameron, D. 2010. Interactions between Rhinanthus minor and its hosts: a review of water, mineral nutrient and hormone flows and exchanges in the hemiparasitic association. Folia Geobotanica, 45: 369–385. https://doi.org/10.1007/s12224-010-9093-2
Joel, D. M., Lytton, J. G. and Musselman, J. 2013. Parasitic Orobanchaceae, Parasitic Mechanisms and Control Strategies. Springer, p: 325.
Khamis, S., Lamaze, T., Lemoine, Y. and Foyer, C. 1990. Adaptation of the photosynthetic apparatus in maize leaves as a result of nitrogen limitation, Relationships between electron transport and carbon assimilation. Plant Physiology, 94: 1436–1443. https://doi.org/10.1104/pp.94.3.1436
Labrousse, P., Delmail, D., Arnaud, M. C. and Thalouarn, P. 2010. Mineral nutrient concentration influences sunflower infection by broomrape (Orobanche cumana). Botany, 88: 839–849. https://doi.org/ 10.1139/B10-057
Lichtenthaler, H. K. and Wellburn, W. R. 1983. Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11:591-592. https://doi.org/ 10.1042/bst0110591
Lima, J. D., Mosquim, P. R. and DaMatta, F. M. 1999. Leaf gas exchange and chlorophyll fluorescence parameters in Phaseolus vulgaris as affected by nitrogen and phosphorus deficiency. Photosynthetica, 37: 113–121. https://doi.org/10.1023/A:1007079215683
Mahgoub, Hassan, M., Osman, A., Yagoub. S., Sherif, A. and Rugheim, A. 2012. Effect of bacterial strains and chicken manure on Orobanche crenata infesting faba bean. Agricultural Journal, 7(2): 122-127. https://doi.org/10.3923/aj.2012.122.127
Mauromicale, G., Antonino L. M., and Longo A. M. G. 2008. Effect of Branched Broomrape (Orobanche ramosa) Infection on the Growth and Photosynthesis of Tomato. Weed Science, 56: 574–581. https://doi.org/10.1614/WS-07-147.1
Motazedi, S., Jahedi, A. and Farnia, A. 2010. Integrated broomrape (Orobanche aegyptiaca) control by sulfosulfuron (WG 75%) herbicide with wheat mulch applied in field potato. In: Proceedings of the 3rd Iranian weed science congress, volume 2: Key papers, weed management and herbicides, Babolsar, Iran, 227–229.
Musselman, L. J. 1980. The biology of Striga, Orobanche, and other root-parasitic weeds. Annual Review of Phytopathology, 18: 463–489. https://doi.org/10.1146/annurev.py.18.090180.002335
Parker, C. and Riches, C. R. 1993. Parasitic weeds of the world: biology and control.CAB International, Wallingford.
Parker, C. 2009. Observations on the current status of Orobanche and Striga problems worldwide. Pest Management Science, 65: 453–459. https://doi.org/10.1017/S0890037X00039063
Pérez-De-Luque, A., Rubiales, D., Cubero, J. I., Press, M. C., Scholes, J., Yoneyama, K., Takeuchi, Y., Plakhin, D. and Joel, D. M. 2005. Interaction between Orobanche crenata and its Host Legumes: Unsuccessful. Annals of Botany, 95: 935–942. https://doi.org/ 10.1093/aob/mci105
Pérez-De-Luque, A., Fondevilla, S., Pérez-Vich. B., Aly. R., Thoiron. S., Simier, P., Castillejo, M. A., Fernández-Martínez, J. M., Jorrín, J., Rubiales, D. and Delavault, P. 2009. Understanding Orobanche and Phelipanche – host plant interaction and developing resistance. Weed Research, 49: 8–22. https://doi.org/10.1111/j.1365-3180.2009.00738.x
Pérez-de-Luque, A., Eizenberg, H., Grenz, J. H., Sillero, J. C., Avila, C., Sauerborn, J. and Rubiales, D. 2010. Broomrape management in faba bean. Field Crop Research, 115: 319–328. https://doi.org/10.1016/j.fcr.2009.02.013
Qasem, J. R. and Kasrawi, M. A. 1994. Variation of resistance to broomrape (Orobanche ramosa) in tomatoes. Euphytica, 81: 109-114. https://doi.org/10.1007/BF00022464
Rubiales, D., Alcántara, C., Pérez-de-Luque, A., Gil, J. and Sillero, J. C. 2003. Infection of chickpea (Cicer arietinum) by crenate broomrape (Orobanche crenata) as influenced by sowing date and weather conditions. Agronomie, 23: 359–362. https://doi.org/10.1051/agro:2003016
Rubiales, D., Pérez-De-Luque, A., Fernández-Aparicio, M., Sillero, J. C., Román, B., Kharrat, M., Khalil, S., Joel, D.M. Riches, C. 2006. Screening techniques and sources of resistance against parasitic weeds in grain legumes. Euphytica, 147: 187–199. https://doi.org/10.1007/s10681-006-7399-1
Scholes, J. D. and Press, M. C. 2008. Striga infestation of cereal crops – an unsolved problem in resource limited agriculture. Current Opinion in Plant Biology, 11: 180–186. https://doi.org/10.1016/j.pbi.2008.02.004
Sillero, J. C., Villegas-Fernández, A. M., Thomas, J., Rojas-Molina, M. M., Emeran, A. A., Fernández-Apa‌ricio, M. and Rubiales, D. 2010. Faba bean breeding for disease resistance. Field Crops Research, 115: 297–307. https://doi.org/10.1016/j.fcr.2009.09.012
Stepien, P. and Klobus, G. 2006. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biologia Plantarum, 50 (4): 610-616. https://doi.org/10.1007/s10535-006-0096-z
Song, W. J., Zhou, W. J., Jin, Z. L., Cao, D. D., Joel, D. M., Takeuchi, Y. and Yoneyama, K. 2005. Germination response of Orobanche seeds subjected to conditioning temperature, water potential and growth regulator treatments. Weed Research, 45: 467–476. https://doi.org/10.1111/j.1365-3180.2005.00477.x
Taylor, A., Martin, J. and Seel, W. E. 1996. Physiology of the parasitic association between maize and witchweed (Striga hermonthica): is ABA involved? Journal of Experimental Botany, 47: 1057–1065. https://doi.org/10.1093/jxb/47.8.1057
Teimouri Jervekan, M., Karimmojeni, H., Brainard, D. C. and Jafari, M. 2016. Sesame genotype influences growth and phenology of Phelipanche aegyptiaca. Annals of Applied Biology, 169: 46-52. https://doi.org/10.1111/aab.12278
Tokasi, S., Bannayanaval, M., Mashhadi, H. R. and Ghanbari, A. 2014. Screening of resistance to P. aegyptiaca infection in tomato varieties. Planta Daninha Viçosa-MG, 32 (1): 109-116. http://dx.doi.org/10.1590/S0100-83582014000100012
Zahhar, N., Larousse, P., Arnaud, M. C. and Boulet, C. 2003. Study of resistance to Orobanche ramosa in host (oilseed rape and carrot) and non-host (maize) plants. European Journal of Plant Pathology, 109: 75–82. https://doi.org/10.1023/A:1022060221283