Effects of endophytic fungi colonization on the growth and physiological responses of Satureja khuzestanica

Volume 11, Issue 1
March 2022
Pages 145-158

Document Type : Original Research

Authors

1 Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.

2 Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.

Abstract
Plant endophytes deployment at the field level affects the productivity of agricultural products. Savory Satureja khuzestanica Jamzad is a valuable medicinal plant native to Iran. In this study, in order to improve the quantitative and qualitative yield of the plant, the development of a suitable method for inoculation of native fungal endophytes to S. khuzestanica is surveyed. Three fungal endophytes (P.I.S.7, D.2.F.1 and D.1.S.1), isolated from savory plants, were inoculated on S. khuzestanica using four different methods (stem injection, foliar spray, soil drench and adding fungi to the soil in granular form) and their impact on plant's growth and its physiological response was analyzed. All inoculation methods, except adding granular form of fungi to the soil, resulted in endophytic colonization of the savory tissues. However, P.I.S.7 isolate was not established in these plants using any inoculated methods. Extent of fungal colonization showed a significant difference with the inoculation method, such that foliar spray had the highest colonization level, followed by stem injection and root drench. The highest rate of fungal colonization belonged to D.1.S.1. isolate. Spraying leaves and stem injection with endophytic fungi, especially in the case of D.1.S.1, significantly enhanced the morphological and physiological characteristics of host plants and the percentage of essential oil yields in these plants. All in all, using the D.1.S.1 isolate and foliar spray method led to savory plants' improved quantitative and qualitative product.

Keywords

Subjects
Akutse, K.S., Maniania, N.K., Fiaboe, K.K. M., Van den Berg, J. & Ekesi, S. 2013. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecology, 6: 293-301.
Alipour, S. 2020. Isolation and identification of some endophytic fungi with Savory plant (Satureja sp.) in some natural habitats of Iran. MSc thesis at Tarbiat Modares University. Tehran. Iran.
Bamisile, B.S., Dash, C.K., Akutse, K.S., Keppanan, R. & Wang, L. 2018. Fungal endophytes, beyond herbivore management. Frontiers in Microbiology, 9: 544.
Behie, S.W., Jones, S.J., Bidochka, M.J. 2015. Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecology, 13: 112e119.
Cherry, A.J., Banito, A., Djegui, D. & Lomer, C. 2004. Suppression of the stem borer Sesamia calamistis (Lepidoptera: noctuidae) in maize following seed dressing, topical application and stem injection with African isolates of Beauveria bassiana. International Journal of Pest Management, 50: 67-73.
Das, A., Tripathi, S. & Varma, A. 2014. In vitro plant development and root colonization of Coleus forskohlii by Piriformospora indica. World Journal of Microbiology and Biotechnology, 30: 1075-1084.
Doccola, J.J. & Wild, P.M. 2012. Tree injection as an alternative method of insecticide application. In: Soloneski, S. & Larramendy, M. (Eds.). Insecticides e Basic and Other Applications. InTech, Croatia, pp. 61e78.
Eyberger, A.L., Dondapati, R. & Porter, J.R. 2006. Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. Journal of Natural Products, 69: 1121-1124.
Greenfield, M., Gomez-Jimenez, M.I., Ortiz, V., Vega, F.E., Kramer, M. & Parsa, S. 2016. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biological Control, 95: 40e48.
Guesmi-Jouini, J., Garrido-Jurado, I., Lopez-Díaz, C., Halima-Kamel, M.B. & Quesada-Moraga, E. 2014. Establishment of fungal entomopathogens Beauveria bassiana and Bionectria ochroleuca (Ascomycota: Hypocreales) as endophytes on artichoke Cynara scolymus. Journal of Invertebrate Pathology, 119: 1-4.
Gupta, R., Singh, A., Srivastava, M., Singh, V., Gupta, M.M. & Pandey, R. 2017. Microbial modulation of bacoside A biosynthetic pathway and systemic defense mechanism in Bacopa monnieri under Meloidogyne incognita stress. Scientific Reports, 7: 41867.
Gupta, R., Tiwari, S., Saikia, S.K., Shukla, V., Singh, R., Singh, S.P., Kumar, P.V. & Pandey, R. 2015. Exploitation of microbes for enhancing bacoside content and reduction of Meloidogyne incognita infestation in Bacopa monnieri L. Protoplasma, 252: 53-61.
Hadian, J., Mirjalilia, M.H., Kananib, M.R., Salehniac A. & Ganjipoorc, P. 2011. Phytochemical and Morphological Characterization of Satureja khuzistanica Jamzad Populations from Iran. Chemistry & Biodiversity, 8: 902-915.
Haeri S., Minaie B., Amin G., Nikfar S., Khorasani R., Esmaily H., Salehnia A. & Abdollahi M. 2006. Effect of Satureja khuzestanica essential oil on male rat fertility. Fitoterapia, 77: 495.
Hamayun, M., Khan, S.A., Ahmad, N., Tang, D.-S., Kang, S.-M., Na, C.-I., Sohn, E.-Y., Hwang, Y.-H., Shin, D.-H. & Lee, B.H. 2009. Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World Journal of Microbiology and Biotechnology, 25: 627-632.
Hardoim, P.R., van Overbeek, L.S., Berg, G., Pirttilä, A.M., Compant, S., Campisano, A., Döring, M. & Sessitsch, A. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Microbiology and Molecular Biology Reviews, 79: 293-320.
Harris, A.R. 2000. Solid formulations of binucleate Rhizoctonia isolates suppress Rhizoctonia solani and Pythium ultimum in potting medium. Microbiological Research, 154: 333-337.
Hiruma, K., Gerlach, N., Sacristán, S., Nakano, R.T., Hacquard, S., Kracher, B., Neumann, U., Ramírez, D., Bucher, M., O’Connell, R.J. & Schulze-Lefert, P. 2016. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell, 165: 464-474.
Jaber, L.R. & Enkerli, J. 2017. Fungal entomopathogens as endophytes: can they promote plant growth? Biocontrol Science and Technology, 27: 28-41.
Jaber, L.R. 2018. Seed inoculation with endophytic fungal entomopathogens promotes plant growth and reduces crown and root rot (CRR) caused by Fusarium culmorum in wheat. Planta, 248: 1525-1535.
Kalra, A., Chandra, M., Awasthi, A., Singh, A.K. & Khanuja, S.P.S. 2010. Natural compounds enhancing growth and survival of rhizobial inoculants in vermicompostbased formulations. Biology and Fertility of Soils, 46: 521-524.
Kasambala Donga, T., Vega, F.E. & Klingen, I. 2018. Establishment of the fungal entomopathogen Beauveria bassiana as an endophyte in sugarcane, Saccharum officinarum. Fungal Ecology, 35:70-77.
Khaledi, A. & Meskini, M. 2020. A Systematic Review of the Effects of Satureja Khuzestanica Jamzad and Zataria Multiflora Boiss against Pseudomonas aeruginosa. Iranian Journal of Medical Sciences, 45(2):83-90.
Khan, A.L., Hamayun, M., Kang, S.M., Kim, Y.H., Jung, H.Y., Lee, J.H. & Lee, I.J. 2012. Endophytic fungal associations via gibberellins and indole acetic acid can improve plant growth under abiotic stress, an example of Paecilomyces formosus LHL10. BMC Microbiology, 12: 3.
Khare, E., Mishra, J. & Arora, N.K. 2018. Multifaceted interactions between endophytes and plant, developments and prospects. Frontiers in Microbiology, 9: 2732.
Kong, Z., Mohamad, O.A., Deng, Z., Liu, X., Glick, B.R. & Wei, G. 2015. Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress. Environmental Science and Pollution Research, 22: 12479-12489.
Kumaran, R.S., Kim, H.J. & Hur, B.K. 2010. Taxol-producing fungal endophyte, Pestalotiopsis species isolated from Taxus cuspidata. Journal of Bioscience and Bioengineering, 110: 541-546.
Kuriakose, G.C., Palem, P.P. & Jayabaskaran, C. 2016. Fungal vincristine from Eutypella spp - CrP14 isolated from Catharanthus roseus induces apoptosis in human squamous carcinoma cell line -A431. BMC Complementary and Alternative Medicine, 16: 302.
Kusari, S., Lamshöft, M., Zühlke, S. & Spiteller, M. 2008. An endophytic fungus from Hypericum perforatum that produces hypericin. Journal of Natural Products, 71: 159-162.
Lareen, A., Burton, F. & Schäfer, P. 2016. Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90: 575-587.
Lobo, C.B., Juárez Tomás, M.S., Viruel, E., Ferrero, M.A. & Lucca, M.E. 2019. Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiological Research, 219: 12-25.
Mastan, A., Rane, D., Dastager, S.G. & Vivek Babu, C.S. 2019. Development of low-cost plant probiotic formulations of functional endophytes for sustainable cultivation of Coleus forskohlii. Microbiological Research, 227: 1-10.
Mohd, S., Shukla, J., Kushwaha, A.S., Mandrah, K., Shankar, J., Arjaria, N., Saxena, P.N., Narayan, R., Roy, S.K. & Kumar, M. 2017. Endophytic fungi Piriformospora indica mediated protection of host from arsenic toxicity. Frontiers in Microbiology: 8, 754.
Palem, P.P., Kuriakose, G.C. & Jayabaskaran, C., 2015. An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS One, 10: e0144476.
Pandey, S.S., Singh, S., Babu, C.S., Shanker, K., Srivastava, N.K., Shukla, A.K. & Kalra, A. 2016a. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis. Scientific Reports, 6: 26583.
Pandey, S.S., Singh, S., Babu, C.S., Shanker, K., Srivastava, N.K. & Kalra, A. 2016b. Endophytes of opium poppy differentially modulate host plant productivity and genes for the biosynthetic pathway of benzylisoquinoline alkaloids. Planta, 243: 1097-1114.
Parsa, S., Ortiz, V. & Vega, F.E. 2013. Establishing fungal entomopathogens as endophytes: towards endophytic biological control. JoVE, 74: e50350.
Posada, F., Aime, M.C., Peterson, S.W., Rehner, S.A. & Vega, F.E. 2007. Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycological Research, 111: 748e757.
Posada, F. & Vega, F.E. 2005. Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia, 97: 1195e1200.
Quesada-Moraga, E., Landa, B.B., Muñoz-Ledesma, J., Jiménez-Diáz, R.M. & Santiago- Alvarez, C. 2006. Endophytic colonisation of Opium poppy, Papaver somniferum, by an entomopathogenic Beauveria bassiana strain. Mycopathologia, 161: 323-329.
Quesada-Moraga, E., Navas-Cortes, J.A., Maranhao, E.A.A., Ortiz-Urquiza, A. & Santiago-Alvarez, C. 2007. Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycological Research, 111: 947e966.
Rabha, A.J., Naglot, A., Sharma, G.D., Gogoi, H.K. & Veer, V. 2014. In vitro evaluation of antagonism of endophytic Colletotrichum gloeosporioides against potent fungal pathogens of Camellia sinensis. Indian Journal of Microbiology, 54: 302-309.
Rozpądek, P., Wężowicz, K., Nosek, M., Ważny, R., Tokarz, K., Lembicz, M., Miszalski, Z. & Turnau, K. 2015. The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Planta, 242: 1025-1035.
Russo, M.L., Pelizzar, S.A., Cabello, M.N., Stenglein, S.A. & Scorsetti, A.C. 2015. Endophytic colonization of tobacco, corn, wheat and soybeans by the fungal entomopathogen Beauveria bassiana (Ascomycota, Hypocreales). Biocontrol Science and Technology, 25: 475-480.
Saadat, M., Pournourmohammadi, S., Donyavi, M., Khorasani, R., Amin, G., Salehnia, A. & Abdollahi, M.. 2004. Alteration of rat hepatic glycogen phosphorylase and phosphoenolpyruvate carboxykinase activities by Satureja khuzestanica Jamzad essential oil. Journal of Pharmacy & Pharmaceutical Sciences, 7: 327.
Sabra, M., Aboulnasr, A., Franken, P., Perreca, E., Wright, L.P. & Camehl, I. 2018. Beneficial root endophytic fungi increase growth and quality parameters of sweet basil in heavy metal contaminated soil. Frontiers in Plant Science, 9: 1726.
Singh, R., Parameswaran, T.N., Prakasa Rao, E.V.S., Puttanna, K., Kalra, A., Srinivas, K.V.N.S., Bagyaraj, D.J. & Divya, S. 2009. Effect of arbuscular mycorrhizal fungi and Pseudomonas fluorescens on root-rot and wilt, growth and yield of Coleus forskohlii. Biocontrol Science and Technology, 19: 835-841.
Tamreihao, K., Ningthoujam, D.S., Nimaichand, S., Singh, E.S., Reena, P., Singh, S.H. & Nongthomba, U. 2016. Biocontrol and plant growth promoting activities of a Streptomyces corchorusii strain UCR3-16 and preparation of powder formulation for application as biofertilizer agents for rice plant. Microbiological Research, 192: 260-270.
Ullah, A., Heng, S., Munis, M.F.H., Fahad, S. & Yang, X. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria, a review. Environmental and Experimental Botany, 117: 28-40.
Wani, Z.A., Kumar, A., Sultan, P., Bindu, K., Riyaz-Ul-Hassan, S. & Ashraf, N. 2017. Mortierella alpina CS10E4, an oleaginous fungal endophyte of Crocus sativus L. enhances apocarotenoid biosynthesis and stress tolerance in the host plant. Scientific Reports, 7: 8598.
Waqas, M., Khan, A.L., Kamran, M., Hamayun, M., Kang, S.M., Kim, Y.H. & Lee, I.J. 2012. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules, 17: 10754-10773.
Yan, J.F., Broughton, S.J., Yang, S.L. & Gange, A.C. 2015. Do endophytic fungi grow through their hosts systemically? Fungal Ecology, 13: 53-59.