An overview of the potential role of microbial metabolites as greener fungicides for future sustainable plant diseases management

Volume 11, Issue 1
March 2022
Pages 1-27

Document Type : Review Article

Authors

1 Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysi, Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia.

2 Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia, Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia.

3 Plant Pathology and Biosecurity Unit, Biology and Sustainability Research Division, Malaysia Palm Oil Board, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.

4 Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia, Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia.

Abstract
Fungal plant diseases can severely damage oil palm crops and compromise agricultural yields. To ensure a high crop yield while keeping the fungal pathogens at bay, microbial control to combat such diseases offers a more sustainable alternative to chemical control. It is safer to replace chemical fungicides with eco-friendly bio formulations containing living fungi or bacteria and their products to manage fungal infestations on plants, especially oil palm. This is because natural antagonistic microorganisms/substances form components of biofungicides and protect plants by various modes of action such as hyperparasitism, antibiosis and/or by induction of systemic resistance. Microbial agents’ application in managing fungal plant diseases, especially oil palm crop diseases, promises a safer and sustainable agricultural system to control fungal phytopathogens while ecologically less polluting. This article briefly describes the different bioformulations and the mechanism of action of microbial agents to manage fungal phytopathogens of crops, especially in oil palm. A summary of various merits and demerits of biofungicides over synthetic ones and the future outlooks are also highlighted. Bio-based microbial agents for controlling fungal phytopathogens, especially in oil palm plants, appear to be a promising fungal pest management approach considering the growing need for sustainable practices in the agronomic sector.

Keywords

Subjects
Abbey, J. A., Percival, D., Abbey, L., Asiedu, S. K., Prithiviraj, B., and Schilder, A. (2019). Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)–prospects and challenges. Biocontrol Science and Technology, 29(3), 207-228.
Abdullah, M. T., Ali, N. Y., and Suleman, P. (2008). Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens. Crop protection, 27(10), 1354-1359.
Adam, G., Anke, H., Boland, W., and Francke, W. (2014). RÖMPP lexikon naturstoffe, 1. auflage, 1997: Georg Thieme Verlag.
Alfano, G., Ivey, M. L., Cakir, C., Bos, J., Miller, S., Madden, L., et al. (2007). Systemic Modulation of Gene Expression in Tomato by Trichoderma hamatum 382. Phytopathology, 97(4), 429-437.
Altomare, C., Norvell, W., Björkman, T., and Harman, G. (1999). Solubilization of Phosphates and Micronutrients by the Plant-Growth-Promoting and Biocontrol Fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology, 65(7), 2926-2933.
Alvarez, E., Llano, G. A., Loke, J. B., and Chacon, M. I. (2012). Characterization of Thielaviopsis paradoxa isolates from oil palms in Colombia, Ecuador and Brazil. Journal of Phytopathology, 160(11-12), 690-700.
Aminov, R. (2017). History of Antimicrobial Drug Discovery: Major classes and health impact. Biochemical Pharmacology, 133, 4-19.
Arora, N. K., Khare, E., and Maheshwari, D. K. (2010). Plant Growth Promoting Rhizobacteria: Constraints in Bioformulation, Commercialization, and Future Strategies. In Plant Growth and Health Promoting Bacteria (pp. 97-116): Springer.
Arseneault, T., and Filion, M. (2017). Biocontrol Through Antibiosis: Exploring the Role Played by Subinhibitory Concentrations of Antibiotics in Soil and their Impact on Plant Pathogens. Canadian Journal of Plant Pathology, 39(3), 267-274.
Bae, H., Roberts, D. P., Lim, H.-S., Strem, M. D., Park, S.-C., Ryu, C.-M., et al. (2011). Endophytic Trichoderma Isolates from Tropical Environments Delay Disease Onset and Induce Resistance against Phytophthora capsici in Hot Pepper Using Multiple Mechanisms. Molecular Plant-Microbe Interactions, 24(3), 336-351.
Bargabus, R., Zidack, N., Sherwood, J., and Jacobsen, B. (2002). Characterisation of Systemic Resistance in Sugar Beet Elicited by a Non-Pathogenic, Phyllosphere-Colonizing Bacillus mycoides, Biological Control Agent. Physiological and Molecular Plant Pathology, 61(5), 289-298.
Bargabus, R., Zidack, N., Sherwood, J., and Jacobsen, B. (2004). Screening for the Identification of Potential Biological Control Agents that Induce Systemic Acquired Resistance in Sugar Beet. Biological Control, 30(2), 342-350.
Bartett, D. W., Clough, J. M., Godfrey, C. R., Godwin, J. R., Hall, A. A., Heaney, S. P., et al. (2001). Understanding the Strobilurin Fungicides. Pesticide Outlook, 12(4), 143-148.
Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., and Parr‐Dobrzanski, B. (2002). The Strobilurin Fungicides. Pest Management Science: formerly Pesticide Science, 58(7), 649-662.
Basaid, K., Chebli, B., Mayad, E.H., Furze, J.N., Bouharroud, R., Krier, F., Barakate, M. and Paulitz, T., 2020. Biological activities of essential oils and lipopeptides applied to control plant pests and diseases: a review. International Journal of Pest Management, pp.1-23.
Benhamou, N. (2004). Potential of the Mycoparasite, Verticillium lecanii, to protect citrus fruit against Penicillium digitatum, the causal agent of green mold: A comparison with the effect of chitosan. Phytopathology, 94(7), 693-705.
Benítez, T., Rincón, A. M., Limón, M. C., and Codon, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International microbiology, 7(4), 249-260.
Berdy, J. (2005). Bioactive microbial metabolites. The Journal of antibiotics, 58(1), 1-26.
Bhattacharjee, R., and Dey, U. (2014). An overview of fungal and bacterial biopesticides to control plant pathogens/diseases. African Journal of Microbiology Research, 8(17), 1749-1762.
Bogumił, A., Paszt, L. S., Lisek, A., Trzciński, P., and Harbuzov, A. (2013). Identification of new Trichoderma strains with antagonistic activity against Botrytis cinerea. Folia Horticulturae, 25(2), 123-132.
Bonaterra, A., Badosa, E., Cabrefiga, J., Francés, J., and Montesinos, E. (2012). Prospects and limitations of microbial pesticides for control of bacterial and fungal pomefruit tree diseases. Trees, 26(1), 215-226.
Borges Chagas, L., Chagas Junior, A., Rodrigues de Carvalho, M., de Oliveira Miller, L., and Colonia, O. (2015). Evaluation of the phosphate solubilization potential of Trichoderma strains (Trichoplus JCO) and effects on rice biomass. Journal of soil science and plant nutrition, 15(3), 794-804.
Brauer, V. S., Rezende, C. P., Pessoni, A. M., De Paula, R. G., Rangappa, K. S., Nayaka, S. C., et al. (2019). Antifungal agents in agriculture: Friends and foes of public health. Biomolecules, 9(10), 521.
Brotman, Y., Lisec, J., Méret, M., Chet, I., Willmitzer, L., and Viterbo, A. (2012). Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology, 158(1), 139-146.
Calvo-Garrido, C., Teixidó, N., Roudet, J., Viñas, I., Usall, J., and Fermaud, M. (2014). Biological control of Botrytis bunch rot in Atlantic climate vineyards with Candida sake CPA-1 and its survival under limiting conditions of temperature and humidity. Biological Control, 79, 24-35.
Cerda, R., Avelino, J., Gary, C., Tixier, P., Lechevallier, E., and Allinne, C. (2017). Primary and secondary yield losses caused by pests and diseases: Assessment and modeling in coffee. PloS one, 12(1), e0169133.
Chakraborty, M., Mahmud, N. U., Gupta, D. R., Tareq, F. S., Shin, H. J., and Islam, T. (2020). Inhibitory effects of linear lipopeptides from a marine Bacillus subtilis on the wheat blast fungus Magnaporthe oryzae Triticum. Frontiers in Microbiology, 11, 665.
Chamorro, M., Miranda, L., Domínguez, P., Medina, J., Soria, C., Romero, F., et al. (2015). Evaluation of biosolarization for the control of charcoal rot disease (Macrophomina phaseolina) in strawberry. Crop Protection, 67, 279-286.
Champigny, M. J., Shearer, H., Mohammad, A., Haines, K., Neumann, M., Thilmony, R., et al. (2011). Localization of DIR1 at the tissue, cellular and subcellular levels during Systemic Acquired Resistance in Arabidopsis using DIR1: GUS and DIR1: EGFP reporters. BMC plant biology, 11(1), 1-16.
Chapla, V. M., Zeraik, M. L., Leptokarydis, I. H., Silva, G. H., Bolzani, V. S., Young, M. C. M., et al. (2014). Antifungal compounds produced by Colletotrichum gloeosporioides, an endophytic fungus from Michelia champaca. Molecules, 19(11), 19243-19252.
Chaube, H. S., Mishra, D. S., Varshney, S., and Singh, U. S. (2004). Biocontrol of plant pathogens by fungal antagonists: Historical background, present status and future prospects. Annual Review of Plant Pathology (Vol. 2), 2, 1-42.
Chauhan, A. K., Maheshwari, D. K., Kim, K., and Bajpai, V. K. (2016). Termitarium-inhabiting Bacillus endophyticus TSH42 and Bacillus cereus TSH77 colonizing Curcuma longa L.: isolation, characterization, and evaluation of their biocontrol and plant-growth-promoting activities. Canadian Journal of Microbiology, 62(10), 880-892.
Choudhary, D. K., Prakash, A., and Johri, B. (2007). Induced systemic resistance (ISR) in plants: mechanism of action. Indian Journal of Microbiology, 47(4), 289-297.
Copping, L. G., and Duke, S. O. (2007). Natural products that have been used commercially as crop protection agents. Pest Management Science: formerly Pesticide Science, 63(6), 524-554.
Copping, L. G., and Menn, J. J. (2000). Biopesticides: a review of their action, applications and efficacy. Pest Management Science: Formerly Pesticide Science, 56(8), 651-676.
Crozier, J., Arroyo, C., Morales, H., Melnick, R., Strem, M., Vinyard, B., et al. (2015). The influence of formulation on Trichoderma biological activity and frosty pod rot management in Theobroma cacao. Plant Pathology, 64(6), 1385-1395.
Das, N., and Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnology research international, 2011.
de Vilhena Araújo, É., de Moraes Pontes, J. G., da Silva, S. N., da Silva Amaral, L., and Fill, T. P. (2020). The chemical warfare involved in endophytic microorganisms-plant associations. In Microbial Endophytes (pp. 125-159): Elsevier.
Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond‐Kosack, K. E., Di Pietro, A., Spanu, P. D., et al. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular plant pathology, 13(4), 414-430.
Dembitsky, V., and Kilimnik, A. (2016). Anti-melanoma agents derived from fungal species. MJ Pharma, 1(1), 002.
Di Francesco, A., Martini, C., and Mari, M. (2016). Biological control of postharvest diseases by microbial antagonists: how many mechanisms of action? European Journal of Plant Pathology, 145(4), 711-717.
Di Francesco, A., Ugolini, L., D'Aquino, S., Pagnotta, E., and Mari, M. (2017). Biocontrol of Monilinia laxa by Aureobasidium pullulans strains: insights on competition for nutrients and space. International journal of food microbiology, 248, 32-38.
Divya, L., and Sadasivan, C. (2016). Trichoderma viride laccase plays a crucial role in defense mechanism against antagonistic organisms. Frontiers in microbiology, 7, 741.
Dong, X. (2004). NPR1, all things considered. Current opinion in plant biology, 7(5), 547-552.
Druzhinina, I. S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B. A., Kenerley, C. M., Monte, E., et al. (2011). Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology, 9(10), 749-759.
Elad, Y. (2000). Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop protection, 19(8-10), 709-714.
Elmhirst, J. F., Haselhan, C., and Punja, Z. (2011). Evaluation of biological control agents for control of botrytis blight of geranium and powdery mildew of rose. Canadian journal of plant pathology, 33(4), 499-505.
Fahad, S., Hussain, S., Bano, A., Saud, S., Hassan, S., Shan, D., et al. (2015). Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environmental Science and Pollution Research, 22(7), 4907-4921.
Feng, C., Ling, H., Du, D., Zhang, J., Niu, G., and Tan, H. (2014). Novel nikkomycin analogues generated by mutasynthesis in Streptomyces ansochromogenes. Microbial cell factories, 13(1), 59.
Feng, Y., Zhan, H., Huang, Y., Bhatt, P., and Chen, S. (2020). An overview of strobilurin fungicide degradation: Current status and future perspective. Frontiers in Microbiology, 11, 389.
Fernández-Ortuño, D., Torés, J. A., De Vicente, A., and Pérez-García, A. (2010). The QoI fungicides, the rise and fall of a successful class of agricultural fungicides. Fungicides, 203-220.
Fontenelle, A., Guzzo, S., Lucon, C., and Harakava, R. (2011). Growth promotion and induction of resistance in tomato plant against Xanthomonas euvesicatoria and Alternaria solani by Trichoderma spp. Crop Protection, 30(11), 1492-1500.
Freeman, S., Minz, D., Kolesnik, I., Barbul, O., Zveibil, A., Maymon, M., et al. (2004). Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. European Journal of Plant Pathology, 110(4), 361-370.
Gao, P., Qin, J., Li, D., and Zhou, S. (2018). Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea. PloS one, 13(1), e0190932.
Garcia-Brugger, A., Lamotte, O., Vandelle, E., Bourque, S., Lecourieux, D., Poinssot, B., et al. (2006). Early signaling events induced by elicitors of plant defenses. Molecular plant-microbe interactions, 19(7), 711-724.
Ge, B., Liu, B., Nwet, T. T., Zhao, W., Shi, L., and Zhang, K. (2016). Bacillus methylotrophicus strain NKG-1, isolated from Changbai Mountain, China, has potential applications as a biofertilizer or biocontrol agent. PloS one, 11(11), e0166079.
Glare, T., Caradus, J., Gelernter, W., Jackson, T., Keyhani, N., Köhl, J., et al. (2012). Have biopesticides come of age? Trends in biotechnology, 30(5), 250-258.
Gomes, E. V., do Nascimento Costa, M., De Paula, R. G., De Azevedo, R. R., Da Silva, F. L., Noronha, E. F., et al. (2015). The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self cell wall protection. Scientific reports, 5, 17998.
Gupta, S., and Dikshit, A. (2010). Biopesticides: An ecofriendly approach for pest control. Journal of Biopesticides, 3(Special Issue), 186.
Haggag, W. M., and Mohamed, H. (2007). Biotechnological aspects of microorganisms used in plant biological control. American-Eurasian Journal of Sustainable Agriculture, 1(1), 7-12.
Handelsman, J., and Stabb, E. V. (1996). Biocontrol of soilborne plant pathogens. The plant cell, 8(10), 1855.
Hanum, H. and Tantawi, A.R., 2016, August. Survey of basal stem rot disease on oil palms (Elaeis guineensis Jacq.) in Kebun Bukit Kijang, North Sumatera, Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 41, No. 1, p. 012007). IOP Publishing.
Harman, G. E. (2000). Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzianum T-22. Plant disease, 84(4), 377-393.
Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96(2), 190-194.
Harman, G. E., Herrera-Estrella, A. H., Horwitz, B. A., and Lorito, M. (2012). Trichoderma–from basic biology to biotechnology. Microbiology, 158(1), 1-2.
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., and Lorito, M. (2004). Trichoderma species—opportunistic, avirulent plant symbionts. Nature reviews microbiology, 2(1), 43-56.
Heaney, S., Hall, A., Davies, S., and Olaya, G. (2000). Resistance to fungicides in the Qol-STAR cross-resistance group: current perspectives. Paper presented at the The BCPC Conference: Pests and diseases, Volume 2. Proceedings of an international conference held at the Brighton Hilton Metropole Hotel, Brighton, UK, 13-16 November 2000, 755-762.
Heil, M. (2009). Damaged-self recognition in plant herbivore defence. Trends in plant science, 14(7), 356-363.
Hermosa, R., Rubio, M. B., Cardoza, R. E., Nicolás, C., Monte, E., and Gutiérrez, S. (2013). The contribution of Trichoderma to balancing the costs of plant growth and defense. Int. Microbiol, 16(2), 69-80.
Heydari, A., and Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of biological sciences, 10(4), 273-290.
Hogenhout, S. A., and Bos, J. I. (2011). Effector proteins that modulate plant–insect interactions. Current opinion in plant biology, 14(4), 422-428.
Horbach, R., Navarro-Quesada, A.R., Knogge, W. and Deising, H.B., 2011. When and how to kill a plant cell: infection strategies of plant pathogenic fungi. Journal of plant physiology, 168(1), pp.51-62.
Howell, C. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant disease, 87(1), 4-10.
Hwang, B. K., Lim, S. W., Kim, B. S., Lee, J. Y., and Moon, S. S. (2001). Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Applied and Environmental Microbiology, 67(8), 3739-3745.
Hwang, E.-I., Yun, B.-S., Kim, Y.-K., Kwon, B.-M., Kim, H.-G., Lee, H.-B., et al. (2000). Phellinsin A, a novel chitin synthases inhibitor produced by Phellinus sp. PL3. The Journal of Antibiotics, 53(9), 903-911.
Irtwange, S. (2006). Application of biological control agents in pre-and postharvest operations. Agricultural Engineering International: CIGR Journal.
Islam, M. T., Hashidoko, Y., Deora, A., Ito, T., and Tahara, S. (2005). Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Applied and Environmental Microbiology, 71(7), 3786-3796.
Jaskiewicz, M., Conrath, U., and Peterhänsel, C. (2011). Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO reports, 12(1), 50-55.
Jeffries, P. (1995). Biology and ecology of mycoparasitism. Canadian Journal of Botany, 73(S1), 1284-1290.
Jespers, A. B., Davidse, L. C., and Dewaard, M. A. (1993). Biochemical effects of the phenylpyrrole fungicide fenpiclonil in Fusarium sulphureum (Schlecht). Pesticide Biochemistry and Physiology, 45(2), 116-129.
Junaid, J. M., Dar, N. A., Bhat, T. A., Bhat, A. H., and Bhat, M. A. (2013). Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. International Journal of Modern Plant & Animal Sciences, 1(2), 39-57.
Kabbage, M., Yarden, O., and Dickman, M. B. (2015). Pathogenic attributes of Sclerotinia sclerotiorum: switching from a biotrophic to necrotrophic lifestyle. Plant science, 233, 53-60.
Karlsson, M., Atanasova, L., Jensen, D. F., and Zeilinger, S. (2017). Necrotrophic mycoparasites and their genomes. The Fungal Kingdom, 1005-1026.
Kashyap, P. L., Kumar, S., and Srivastava, A. K. (2017). Nanodiagnostics for plant pathogens. Environmental Chemistry Letters, 15(1), 7-13.
Kessel, G., Köhl, J., Powell, J. A., Rabbinge, R., and Van der Werf, W. (2005). Modeling spatial characteristics in the biological control of fungi at leaf scale: competitive substrate colonization by Botrytis cinerea and the saprophytic antagonist Ulocladium atrum. Phytopathology, 95(4), 439-448.
Keswani, C., Bisen, K., Singh, V., Sarma, B. K., and Singh, H. B. (2016). Formulation technology of biocontrol agents: present status and future prospects. In Bioformulations: For sustainable agriculture (pp. 35-52): Springer.
Keswani, C., Mishra, S., Sarma, B. K., Singh, S. P., and Singh, H. B. (2014). Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Applied microbiology and biotechnology, 98(2), 533-544.
Khalili, E., Huyop, F., Javed, M. A., Mahat, N. A., Batumalaie, K., and Wahab, R. A. (2018). Assessments on the catalytic and kinetic properties of Beta-glucosidase isolated from a highly efficient antagonistic fungus Trichoderma harzianum. Bioscience Journal, 34(4).
Khalili, E., Huyop, F., Myra Abd Manan, F., and Wahab, R. A. (2017). Optimization of cultivation conditions in banana wastes for production of extracellular β-glucosidase by Trichoderma harzianum Rifai efficient for in vitro inhibition of Macrophomina phaseolina. Biotechnology & Biotechnological Equipment, 31(5), 921-934.
Khalili, E., Javed, M., Huyop, F., and Wahab, R. (2019). Efficacy and cost study of green fungicide formulated from crude beta-glucosidase. International Journal of Environmental Science and Technology, 16(8), 4503-4518.
Khalili, E., Javed, M. A., Huyop, F., Rayatpanah, S., Jamshidi, S., and Wahab, R. A. (2016). Evaluation of Trichoderma isolates as potential biological control agent against soybean charcoal rot disease caused by Macrophomina phaseolina. Biotechnology & Biotechnological Equipment, 30(3), 479-488.
Khater, M., de la Escosura-Muñiz, A., and Merkoçi, A. (2017). Biosensors for plant pathogen detection. Biosensors and Bioelectronics, 93, 72-86.
Kilani, J., and Fillinger, S. (2016). Phenylpyrroles: 30 years, two molecules and (nearly) no resistance. Frontiers in microbiology, 7, 2014.
Kim, H. J., Hwang, I. S., Kim, B. S., and Hwang, B. K. (2006). Isolation and in vitro and in vivo antifungal activity of phenylacetic acid produced by Micromonospora aurantiaca strain JK-1. Plant Pathology Journal, 22(1), 75.
Kim, J.-C., Park, G.-J., Kim, H.-J., Kim, H.-T., Ahn, J.-W., and Cho, K.-Y. (2002). Verlamelin, an antifungal compound produced by a mycoparasite, Acremonium strictum. The Plant Pathology Journal, 18(2), 102-105.
Kim, K., Heo, Y. M., Jang, S., Lee, H., Kwon, S.-L., Park, M. S., et al. (2020). Diversity of Trichoderma spp. in Marine Environments and Their Biological Potential for Sustainable Industrial Applications. Sustainability, 12(10), 4327.
Köhl, J., and Fokkema, N. J. (1998). Strategies for biological control of necrotrophic fungal foliar pathogens. Plant microbe interactions and biological control. Marcel Dekker, New York, 49-88.
(Köhl, J., Kolnaar, R., and Ravensberg, W. J. 2019). Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science, 10, 845.
Koul, O. (2012). Microbial biopesticides: Opportunities and challenges. Biocontrol News and Information, 33(2), 1R.
Koutsoudakis, G., Romero-Brey, I., Berger, C., Pérez-Vilaró, G., Perin, P. M., Vondran, F. W. R., et al. (2015). Soraphen A: A broad-spectrum antiviral natural product with potent anti-hepatitis C virus activity. Journal of hepatology, 63(4), 813-821.
Kuć, J. (1982). Induced immunity to plant disease. Bioscience, 32(11), 854-860.
Kumar, A., Singh, R., Yadav, A., Giri, D., Singh, P., and Pandey, K. D. (2016). Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech, 6(1), 60.
Kumar, G., Maharshi, A., Patel, J., Mukherjee, A., Singh, H., and Sarma, B. (2017). Trichoderma: a potential fungal antagonist to control plant diseases. SATSA Mukhapatra-Annual Technical Issue, 21, 206-218.
Law, J. W.-F., Ser, H.-L., Khan, T. M., Chuah, L.-H., Pusparajah, P., Chan, K.-G., et al. (2017). The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Frontiers in microbiology, 8, 3.
Lee, D. W., and Kim, B. S. (2015). Antimicrobial cyclic peptides for plant disease control. The plant pathology journal, 31(1), 1.
Lee, J. P., Lee, S.-W., Kim, C. S., Son, J. H., Song, J. H., Lee, K. Y., et al. (2006). Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biological control, 37(3), 329-337.
Lee, J. Y., Lee, J. Y., Moon, S. S., and Hwang, B. K. (2005). Isolation and antifungal activity of 4-phenyl-3-butenoic acid from Streptomyces koyangensis strain VK-A60. Journal of agricultural and food chemistry, 53(20), 7696-7700.
Lee, J. Y., Moon, S. S., Yun, B. S., Yoo, I. D., and Hwang, B. K. (2004). Thiobutacin, a Novel Antifungal and Antioomycete Antibiotic from Lechevalieria aerocolonigenes. Journal of natural products, 67(12), 2076-2078.
Lewis, K., Whipps, J., and Cooke, R. (1989). Mechanisms of biological disease control with special reference to the case study of Pythium oligandrum as an antagonist. Biotechnology of Fungi for Improving Plant Growth (16), 191.
Li, J., Li, L., Feng, C., Chen, Y., and Tan, H. (2012). Novel polyoxins generated by heterologously expressing polyoxin biosynthetic gene cluster in the sanN inactivated mutant of Streptomyces ansochromogenes. Microbial cell factories, 11(1), 135.
Liao, G., Li, J., Li, L., Yang, H., Tian, Y., and Tan, H. (2010). Cloning, reassembling and integration of the entire nikkomycin biosynthetic gene cluster into Streptomyces ansochromogenes lead to an improved nikkomycin production. Microbial cell factories, 9(1), 6.
Lin, C., Yang, J., Sun, H., Huang, X., Wang, R., and Zhang, K.-Q. (2007). Purification and characterization of a β-1, 3-glucanase from the novel mycoparasite Periconia byssoides. Biotechnology letters, 29(4), 617-622.
Liu, X., Cao, A., Yan, D., Ouyang, C., Wang, Q., and Li, Y. (2019). Overview of mechanisms and uses of biopesticides. International Journal of Pest Management, 1-8.
Lugtenberg, B., and Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual review of microbiology, 63, 541-556.
Lugtenberg, B., Rozen, D. E., and Kamilova, F. (2017). Wars between microbes on roots and fruits. F1000Research, 6.
Lyu, X., Shen, C., Fu, Y., Xie, J., Jiang, D., Li, G., et al. (2016). A small secreted virulence-related protein is essential for the necrotrophic interactions of Sclerotinia sclerotiorum with its host plants. PLoS pathogens, 12(2), e1005435.
Maheshwari, D. K. (2010). Plant growth and health promoting bacteria (Vol. 18): Springer Science & Business Media.
Maizatul‐Suriza, M., Suhanah, J., Madihah, A.Z., Idris, A.S. and Mohidin, H., 2021. Phylogenetic and pathogenicity evaluation of the marasmioid fungus Marasmius palmivorus causing fruit bunch rot disease of oil palm. Forest Pathology, 51(1), p.e12660.
Małolepsza, U., Nawrocka, J., and Szczech, M. (2017). Trichoderma virens 106 inoculation stimulates defence enzyme activities and enhances phenolic levels in tomato plants leading to lowered Rhizoctonia solani infection. Biocontrol Science and Technology, 27(2), 180-199.
Mao, X. M., Xu, W., Li, D., Yin, W. B., Chooi, Y. H., Li, Y. Q., et al. (2015). Epigenetic genome mining of an endophytic fungus leads to the pleiotropic biosynthesis of natural products. Angewandte Chemie, 127(26), 7702-7706.
Martínez-Soto, D., Velez-Haro, J. M., León-Ramírez, C. G., Ruiz-Medrano, R., Xoconostle-Cázares, B., and Ruiz-Herrera, J. (2019). The cereal phytopathogen Sporisorium reilianum is able to infect the non-natural host Arabidopsis thaliana. European Journal of Plant Pathology, 153(2), 417-427.
Martínez‐Medina, A., Van Wees, S. C., and Pieterse, C. M. (2017). Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid‐dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant, cell & environment, 40(11), 2691-2705.
Maruyama, H., Okamoto, S., Kubo, Y., Tsuji, G., Fujii, I., Ebizuka, Y., et al. (2003). Isolation of abikoviromycin and dihydroabikoviromycin as inhibitors of polyketide synthase involved in melanin biosynthesis by Colletotrichum lagenarium. The Journal of antibiotics, 56(9), 801-804.
Mauch-Mani, B., Baccelli, I., Luna, E., and Flors, V. (2017). Defense priming: an adaptive part of induced resistance. Annual review of plant biology, 68, 485-512.
Memelink, J. (2009). Regulation of gene expression by jasmonate hormones. Phytochemistry, 70(13-14), 1560-1570.
Mishina, T. E., and Zeier, J. (2007). Pathogen‐associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. The Plant Journal, 50(3), 500-513.
Mithöfer, A., and Boland, W. (2008). Recognition of herbivory-associated molecular patterns. Plant Physiology, 146(3), 825-831.
Mizuno, K., Yagi, A., Satoi, S., Takada, M., Hayashi, M., Asano, K., et al. (1977). Studies on aculeacin. The Journal of antibiotics, 30(4), 297-302.
Mohammed, C., Rimbawanto, A., and Page, D. (2014). Management of basidiomycete root‐and stem‐rot diseases in oil palm, rubber and tropical hardwood plantation crops. Forest Pathology, 44(6), 428-446.
Mousavi, S. A., Chauvin, A., Pascaud, F., Kellenberger, S., and Farmer, E. E. (2013). Glutamate receptor-like genes mediate leaf-to-leaf wound signalling. Nature, 500(7463), 422-426.
Moussa, A. Y., Lambert, C., Stradal, T. E., Ashrafi, S., Maier, W., Stadler, M., et al. (2020). New Peptaibiotics and a Cyclodepsipeptide from Ijuhya vitellina: Isolation, Identification, Cytotoxic and Nematicidal Activities. Antibiotics, 9(3), 132.
Mudgal, S., De Toni, A., Tostivint, C., Hokkanen, H., and Chandler, D. (2013). Scientific support, literature review and data collection and analysis for risk assessment on microbial organisms used as active substance in plant protection products–Lot 1 Environmental Risk characterisation. EFSA Supporting Publications, 10(12), 518E.
Mukherjee, M., Mukherjee, P. K., Horwitz, B. A., Zachow, C., Berg, G., and Zeilinger, S. (2012). Trichoderma–plant–pathogen interactions: advances in genetics of biological control. Indian journal of microbiology, 52(4), 522-529.
Nandi, M., Selin, C., Brassinga, A. K. C., Belmonte, M. F., Fernando, W. D., Loewen, P. C., et al. (2015). Pyrrolnitrin and hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal and repellent activity against Caenorhabditis elegans. PloS one, 10(4), e0123184.
Nitta, M., Shida, Y., Okada, H., Osumi, M., and Ogasawara, W. (2012). Hyphal surface architecture and cell morphology of Trichoderma reesei. Journal of electron microscopy, 61(3), 187-192.
Nusaibah, S.A., Akmar, A.S.N., Idris, A.S., Sariah, M. and Pauzi, Z.M., 2016. Involvement of metabolites in early defense mechanism of oil palm (Elaeis guineensis Jacq.) against Ganoderma disease. Plant Physiology and Biochemistry, 109, pp.156-165.
Nygren, K., Dubey, M., Zapparata, A., Iqbal, M., Tzelepis, G. D., Durling, M. B., et al. (2018). The mycoparasitic fungus Clonostachys rosea responds with both common and specific gene expression during interspecific interactions with fungal prey. Evolutionary applications, 11(6), 931-949.
Onoja, E., Chandren, S., Razak, F. I. A., Mahat, N. A., and Wahab, R. A. (2019). Oil palm (Elaeis guineensis) biomass in Malaysia: the present and future prospects. Waste and Biomass Valorization, 10(8), 2099-2117.
Onoja, E., Chandren, S., Razak, F. I. A., and Wahab, R. A. (2018). Extraction of nanosilica from oil palm leaves and its application as support for lipase immobilization. Journal of biotechnology, 283, 81-96.
Oruç, E. Ö. (2010). Oxidative stress, steroid hormone concentrations and acetylcholinesterase activity in Oreochromis niloticus exposed to chlorpyrifos. Pesticide Biochemistry and Physiology, 96(3), 160-166.
Pajerowska-Mukhtar, K. M., Emerine, D. K., and Mukhtar, M. S. (2013). Tell me more: roles of NPRs in plant immunity. Trends in plant science, 18(7), 402-411.
Park, S. R., Han, A. R., Ban, Y.-H., Yoo, Y. J., Kim, E. J., and Yoon, Y. J. (2010). Genetic engineering of macrolide biosynthesis: past advances, current state, and future prospects. Applied microbiology and biotechnology, 85(5), 1227-1239.
Patel, S., and Saraf, M. (2017). Biocontrol efficacy of Trichoderma asperellum MSST against tomato wilting by Fusarium oxysporum f. sp. lycopersici. Archives of Phytopathology and Plant Protection, 50(5-6), 228-238.
Pawar, S., Chaudhari, A., Prabha, R., Shukla, R., and Singh, D. P. (2019). Microbial pyrrolnitrin: natural metabolite with immense practical utility. Biomolecules, 9(9), 443.
Peters, L. P., Prado, L. S., Silva, F. I., Souza, F. S., and Carvalho, C. M. (2020). Selection of endophytes as antagonists of Colletotrichum gloeosporioides in açaí palm. Biological Control, 104350.
Pieterse, C. M., Van der Does, D., Zamioudis, C., Leon-Reyes, A., and Van Wees, S. C. (2012). Hormonal modulation of plant immunity. Annual review of cell and developmental biology, 28.
Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C., and Bakker, P. A. (2014). Induced systemic resistance by beneficial microbes. Annual review of phytopathology, 52.
Pooja, K., and Katoch, A. (2014). Past, present and future of rice blast management. Plant Science Today, 1(3), 165-173.
Pradana, Y. S., Hidayat, A., Prasetya, A., and Budiman, A. (2017). Biodiesel production in a reactive distillation column catalyzed by heterogeneous potassium catalyst. Energy Procedia, 143, 742-747.
Raaijmakers, J. M., and Mazzola, M. (2012). Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual review of phytopathology, 50, 403-424.
Raaijmakers, J. M., Sluis, L. v. d., Bakker, P. A., Schippers, B., Koster, M., and Weisbeek, P. J. (1995). Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Canadian Journal of Microbiology, 41(2), 126-135.
Rajwade, J. M., Chikte, R., and Paknikar, K. (2020). Nanomaterials: new weapons in a crusade against phytopathogens. Applied Microbiology and Biotechnology, 104(4), 1437-1461.
Ramli, N.R., Mohamed, M.S., Seman, I.A., Zairun, M.A. and Mohamad, N., 2016. The potential of endophytic bacteria as a biological control agent for Ganoderma disease in oil palm. Sains Malaysiana, 45(3), pp.401-409.
Rania, A. B. A., Jabnoun-Khiareddine, H., Nefzi, A., Mokni-Tlili, S., and Daami-Remadi, M. (2016). Endophytic bacteria from Datura metel for plant growth promotion and bioprotection against Fusarium wilt in tomato. Biocontrol Science and Technology, 26(8), 1139-1165.
Raymaekers, K., Ponet, L., Holtappels, D., Berckmans, B., and Cammue, B. P. (2020). Screening for novel biocontrol agents applicable in plant disease management–a review. Biological Control, 104240.
Rees, R.W., Flood, J., Hasan, Y., Wills, M.A. and Cooper, R.M., 2012. Ganoderma boninense basidiospores in oil palm plantations: evaluation of their possible role in stem rots of Elaeis guineensis. Plant pathology, 61(3), pp.567-578.
Regnault-Roger, C., and Philogène, B. J. (2008). Past and current prospects for the use of botanicals and plant allelochemicals in integrated pest management. Pharmaceutical Biology, 46(1-2), 41-52.
Rubio-Canalejas, A., Celador-Lera, L., Cruz-González, X., Menéndez, E., and Rivas, R. (2016). Rhizobium as potential biofertilizer of Eruca Sativa. In Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction (pp. 213-220): Springer.
Rusli, M.H., Idris, A.S. and Cooper, R.M., 2015. Evaluation of Malaysian oil palm progenies for susceptibility, resistance or tolerance to Fusarium oxysporum f. sp. elaeidis and defence‐related gene expression in roots. Plant Pathology, 64(3), pp.638-647.
Sánchez, A. D., Ousset, M. J., and Sosa, M. C. (2019). Biological control of Phytophthora collar rot of pear using regional Trichoderma strains with multiple mechanisms. Biological Control, 135, 124-134.
Segarra, G., Casanova, E., Avilés, M., and Trillas, I. (2010). Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microbial ecology, 59(1), 141-149.
Selin, C., Habibian, R., Poritsanos, N., Athukorala, S. N., Fernando, D., and De Kievit, T. R. (2009). Phenazines are not essential for Pseudomonas chlororaphis PA23 biocontrol of Sclerotinia sclerotiorum but do play a role in biofilm formation. FEMS microbiology ecology, 71(1), 73-83.
Sequeira, L. (1983). Mechanisms of induced resistance in plants. Annual Review of Microbiology, 37(1), 51-79.
Shoresh, M., Harman, G. E., and Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual review of phytopathology, 48, 21-43.
Sierotzki, H., Parisi, S., Steinfeld, U., Tenzer, I., Poirey, S., and Gisi, U. (2000). Mode of resistance to respiration inhibitors at the cytochrome bc1 enzyme complex of Mycosphaerella fijiensis field isolates. Pest Management Science: formerly Pesticide Science, 56(10), 833-841.
Singh, B. N., Singh, A., Singh, S. P., and Singh, H. B. (2011). Trichoderma harzianum-mediated reprogramming of oxidative stress response in root apoplast of sunflower enhances defence against Rhizoctonia solani. European Journal of Plant Pathology, 131(1), 121-134.
Singh, H. (2014). Management of plant pathogens with microorganisms. Paper presented at the Proc Indian Natl Sci Acad, 443-454.
Singh, H., Singh, A., Sarma, B., and Upadhyay, D. (2014). Trichoderma viride 2% WP (Strain No. BHU-2953) formulation suppresses tomato wilt caused by Fusarium oxysporum f. sp. lycopersici and chilli damping-off caused by Pythium aphanidermatum effectively under different agroclimatic conditions. International Journal of Agriculture, Environment and Biotechnology, 7(2), 313-320.
Sjaarda, C. P., Abubaker, K. S., and Castle, A. J. (2015). Induction of lcc2 expression and activity by Agaricus bisporus provides defence against Trichoderma aggressivum toxic extracts. Microbial biotechnology, 8(6), 918-929.
Soliman, H.M., El-Metwally, M.A., Elkahky, M.T. and Badawi, W.E., 2015. Alternatives to chemical control of grey mold disease on cucumber caused by Botrytis cinerea Pers. Asian Journal of Plant Pathology, 9(1), pp.1-15.
Spadaro, D., and Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology, 47, 39-49.
Sridhar, K. R., and Deshmukh, S. K. (2019). Advances in Macrofungi: Diversity, Ecology and Biotechnology: CRC Press.
Sundram, S., Abdullah, F., Ahmad, Z.A.M. and Yusuf, U.K., 2008. Efficacy of single and mixed treatments of Trichoderma harzianum as biocontrol agents of Ganoderma basal stem rot in oil palm. Journal of Oil Palm Research, 20, pp.470-483.
Thakur, M., and Sohal, B. S. (2013). Role of elicitors in inducing resistance in plants against pathogen infection: a review. International Scholarly Research Notices, 2013.
Thines, E., Anke, H., and Weber, R. W. (2004). Fungal secondary metabolites as inhibitors of infection-related morphogenesis in phytopathogenic fungi. Mycological research, 108(1), 14-25.
Topal, A., Oruç, E., Altun, S., Ceyhun, S. B., and Atamanalp, M. (2016). The effects of acute boric acid treatment on gill, kidney and muscle tissues in juvenile rainbow trout. Journal of Applied Animal Research, 44(1), 297-302.
Torres, G.A., Sarria, G.A., Varon, F., Coffey, M.D., Elliott, M.L. and Martinez, G., 2010. First report of bud rot caused by Phytophthora palmivora on African oil palm in Colombia. Plant Disease, 94(9), pp.1163-1163.
Tsatsakis, A. M., Nawaz, M. A., Kouretas, D., Balias, G., Savolainen, K., Tutelyan, V. A., et al. (2017). Environmental impacts of genetically modified plants: a review. Environmental research, 156, 818-833.
Van Loon, L. (2000). Helping plants to defend themselves: biocontrol by disease-suppressing rhizobacteria. In Developments in Plant Genetics and Breeding (Vol. 6, pp. 203-213): Elsevier.
Van Loon, L., Bakker, P., and Pieterse, C. (1998). Systemic resistance induced by rhizosphere bacteria. Annual review of phytopathology, 36(1), 453-483.
Van Loon, L. C., Rep, M., and Pieterse, C. M. (2006). Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol., 44, 135-162.
Van Wees, S. C., Van der Ent, S., and Pieterse, C. M. (2008). Plant immune responses triggered by beneficial microbes. Current opinion in plant biology, 11(4), 443-448.
Varma, P. K., Mangala, U. N., Madhavi, K. J., and Kumar, K. V. K. (2015). 7 Nutrient Supplements for Plant Pathogenic Bacteria. Sustainable Approaches to Controlling Plant Pathogenic Bacteria, 151.
Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., et al. (1994). Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. The Plant Cell, 6(7), 959-965.
Vijayakumar, E., Roy, K., Chatterjee, S., Deshmukh, S., Ganguli, B., Fehlhaber, H.-W., et al. (1996). Arthrichitin. A new cell wall active metabolite from Arthrinium phaeospermum. The Journal of organic chemistry, 61(19), 6591-6593.
Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., and Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40(1), 1-10.
Viterbo, A., Inbar, J., Hadar, Y., and Chet, I. (2007). Plant disease biocontrol and induced resistance via fungal mycoparasites. The Mycota IV: Environmental and Microbial Relationships. (eds Kubicek, CP & Druzhinina, IS). Springer, Heidelberg, Germany, 127-146.
Vleeshouwers, V. G., and Oliver, R. P. (2014). Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens. Molecular plant-microbe interactions, 27(3), 196-206.
Vlot, A. C., Dempsey, D. M. A., and Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual review of phytopathology, 47, 177-206.
Wallace, R. L., Hirkala, D. L., and Nelson, L. M. (2018). Mechanisms of action of three isolates of Pseudomonas fluorescens active against postharvest grey mold decay of apple during commercial storage. Biological Control, 117, 13-20.
Wang, D., Hiebl, V., Schachner, D., Ladurner, A., Heiss, E. H., Atanasov, A. G., et al. (2020). Soraphen A enhances macrophage cholesterol efflux via indirect LXR activation and ABCA1 upregulation. Biochemical Pharmacology, 114022.
Wang, X., Lin, M., Xu, D., Lai, D., and Zhou, L. (2017). Structural diversity and biological activities of fungal cyclic peptides, excluding cyclodipeptides. Molecules, 22(12), 2069.
Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of experimental Botany, 52(suppl_1), 487-511.
Wiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R., et al. (2014). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in plant science, 5, 655.
Wilhite, S., Lumsden, R., and Straney, D. (2001). Peptide synthetase gene in Trichoderma virens. Applied and environmental microbiology, 67(11), 5055-5062.
Woo, S. L., and Lorito, M. (2007). Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol. In Novel biotechnologies for biocontrol agent enhancement and management (pp. 107-130): Springer.
Wu, J., and Baldwin, I. T. (2010). New insights into plant responses to the attack from insect herbivores. Annual review of genetics, 44, 1-24.
Wu, Y., Zhang, D., Chu, J. Y., Boyle, P., Wang, Y., Brindle, I. D., et al. (2012). The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell reports, 1(6), 639-647.
Yamaguchi, H., Hiratani, T., Iwata, K., and Yamamoto, Y. (1982). Studies on the mechanism of antifungal action of aculeacin A. The Journal of antibiotics, 35(2), 210-219.
Yu, Y., Bai, L., Minagawa, K., Jian, X., Li, L., Li, J., et al. (2005). Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. Applied and environmental microbiology, 71(9), 5066-5076.
Zhang, D., and Miller, M. (1999). Polyoxins and nikkomycins: progress in synthetic and biological studies. Current pharmaceutical design, 5(2), 73-100.
Zhang, F., Chen, C., Zhang, F., Gao, L., Liu, J., Chen, L., et al. (2017). Trichoderma harzianum containing 1-aminocyclopropane-1-carboxylate deaminase and chitinase improved growth and diminished adverse effect caused by Fusarium oxysporum in soybean. Journal of plant physiology, 210, 84-94.
Zhang, M., Liu, W., Qu, Q., Ke, M., Zhang, Z., Zhou, Z., et al. (2020). Metabolomic modulations in a freshwater microbial community exposed to the fungicide azoxystrobin. Journal of Environmental Sciences, 97, 102-109.
Zheng, L., Xi, P., SiTu, J., Chen, X., Li, J., Qin, X., et al. (2017). First report of Phoma herbarum causing leaf spot of oil palm (Elaeis guineensis) in China. Plant Disease, 101(4), 629-630.
Zhou, T.-C., and Zhong, J.-J. (2015). Production of validamycin A from hemicellulose hydrolysate by Streptomyces hygroscopicus 5008. Bioresource Technology, 175, 160-166.