Biological control of sesame charcoal rot by gamma-irradiated mutants of Trichoderma aureoviride and their RAPD-PCR fingerprinting

Volume 10, Issue 4
December 2021
Pages 723-744

Document Type : Original Research

Authors

1 Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.

2 Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), Alborz, Iran.

3 Department of Horticulture and Plant Protection, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.

Abstract
The potential of Trichoderma spp. for biocontrol of phytopathogenic fungi has been well documented. In this study, the wild-type isolate of Trichoderma aureoviride (Tv59) was treated with the target dose of 250 Gy as the optimum dose. Twenty-six mutants were preliminarily screened based on better growth rates. In vitro, antagonistic evaluation of the 26 mutants and wild-type was performed against two Macrophomina phaseolina isolates (F33 and H7). Six mutants (Tv2(4), Tv20(6), Tv25(6), Tv3(3), Tv4(5), and Tv3(4)) showed remarkable inhibitory activity and were selected for further examination in greenhouse trials. Greenhouse assessment of the selected mutants against M. phaseolina isolates revealed Tv20(6) and Tv25(6) as the most highly effective treatments screened for the measured indices. Moreover, the total genomic DNA of the wild-type isolate and its 26 corresponding mutants were analyzed to determine their genetic variability through the RAPD technique. Five RAPD primers generated different banding patterns and yielded a total of 178 amplified fragments, 172 amplicons (96.62%) were polymorphic. While the dendrogram obtained by UPGMA cluster analysis of combined RAPD fingerprints differentiated the wild-type from its mutants at approximately 40% similarity level, the mutants were categorized into two clusters. Based on Jaccard similarity coefficients, eight mutants (Tv25(6), Tv1(5), Tv14(5), Tv20(6), Tv3(4), Tv40(6), Tv33(6), and Tv14(6)) showed the lowest genetic similarities with the parental isolate. The possibility of improvement in biocontrol effectiveness of T. aureoviride through random mutagenesis and detection and differentiation of genetic changes induced by gamma rays using RAPD analysis was successfully proved in the present study.

Keywords

Subjects
Abbasi, S., Safaie, N. and Shamsbakhsh, M. 2014. Evaluation of gamma-induced mutants of Trichoderma harzianum for biological control of charcoal rot of melon (Macrophomina phaseolina) in laboratory and greenhouse conditions. Journal of Crop Protection, 3(4): 509-521.
Abbasi, S., Safaie, N., Shamsbakhsh, M. and Shahbazi, S. 2016. Biocontrol activities of gamma induced mutants of Trichoderma harzianum against some soilborne fungal pathogens and their DNA fingerprinting. Iranian Journal of Biotechnology, 14(4): 260-269. https://doi.org/10.15171/ijb.1224.
Abdel-Kader, M. M., El-Mougy, N. S., Aly, M. D. E. H. and Lashin, S. M. 2010. First report of ashy stem blight caused by Macrophomina phaseolina on Aeonium canariense in Egypt. Journal of Plant Pathology and Microbiology, 1(101): 2. https://doi.org/10.4172/2157-7471.1000101.
Afify, A., Abo-El-Seoud, M. A., Ibrahim, G. M. and Kassem, B. W. 2013. Stimulating of biodegradation of oxamyl pesticide by low dose gamma irradiated Fungi. Journal of Plant Pathology and Microbiology, 4(9): 201. https://doi.org/10.4172/2157-7471.1000201.
Ahari Mostafavi, H., Safaie, N., Fathollahi, H., Babaie, M., Dorri, H. R. and Lak, M. R. 2010. Pathological and molecular identification of Fusarium solani f.sp. phaseoli isolates and determination of suitable gamma ray dose rate for mutation induction. Journal of Nuclear Science and Technology, 2(51): 48-51.
Aly, A. A., Abdel-Sattar, M. A., Omar, M. R. and Abd-Elsalam, K. A. 2007. Differential antagonism of Trichoderma spp. against Macrophomina phaseolina. Journal of Plant Protection Research, 47(2): 91-102.
Aly, A. A., El-Shazly, A. M. M., Youssef, R. M. and Omar, M. R. 2001. Chemical and biological control of charcoal rot of cotton caused by Macrophomina phaseolina. Journal of Agricultural Science, 26: 7661-7674.
Anis, M., Abbasi, M. W. and Zaki, M. J. 2010. Bioefficacy of microbial antagonists against Macrophomina phaseolina on sunflower. Pakistan Journal of Botany, 42(4): 2935-2940.
Aquino, S. 2011. Gamma radiation against toxigenic fungi in food, medicinal and aromatic herbs. In: Mendelez-Vilas, A. (Ed.), Science against microbial pathogen: Communicating current research and technological advances. Badajoz, Spain. pp. 272-281.
Atienzar, F. A. and Jha, A. N. 2006. The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutation Research/Reviews in Mutation Research, 613(2-3): 76-102. https://doi.org/10.1016/j.mrrev.2006.06.001.
Bagheri, K., Shahbazi, S., Askari, H., Mojerlou, S. and Amirlou, F. 2018. Cellulase enzyme production enhancement in Trichoderma viride by gamma ray induced mutation. Nova Biologica Reperta, 4(4): 329-336 (in Persian).
Barari, H. and Foroutan, A. 2016. Biocontrol of soybean charcoal root rot disease by using Trichoderma spp. Cercetări Agronomiceîn Moldova, 49: 41-51. https://doi.org/10.1515/cerce-2016-0014.
Benítez, T., Rincón, A. M., Limón, M. C. and Codón, A. C. 2004. Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7(4): 249-260.
Carvalho, D. D. C., Inglis, P. W., Ávila, Z., Martins, I., Muniz, P. and Mello, S. 2018. Morphological characteristics and genetic variability of Trichoderma spp. from conventional cotton crop coils in Federal district, Brazil. Journal of Agricultural Science, 10: 146-155. https://doi.org/10.5539/jas.v10n8p146.
Chauhan, T. and Rajiv, K. 2010. Molecular markers and their applications in fisheries and aquaculture. Advances in Bioscience and Biotechnology, 1: 281-291. https://doi.org/10.4236/abb.2010.14037.
Cherkupally, R., Amballa, H. and Reddy, B. N. 2016. In vitro antagonistic activity of Trichoderma and Penicillium species against Macrophomina phaseolina (Tassi) Goid. Annals of Biological Research, 7(9): 34-38.
Dennis, C. and Webster, J. 1971a. Antagonistic properties of species-groups of Trichoderma: I. Production of non-volatile antibiotics. Transactions of the British Mycological Society, 57(1): 25-39. https://doi.org/10.1016/S0007-1536(71)80077-3.
Dennis, C. and Webster, J. 1971b. Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Transactions of the British Mycological Society, 57(1): 41-48. https://doi.org/10.1016/S0007-1536(71)80078-5.
Dhillon, R. S., Saharan, R. P., Jattan, M., Rani, T., Sheokand, R. N., Dalal, V. and Wuehlisch, G. V. 2014. Molecular characterization of induced mutagenesis through gamma radiation using RAPD markers in Jatropha curcas L. African Journal of Biotechnology, 13(7): 806-813. https://doi.org/10.5897/AJB12.2934.
Dodd, S. L., Hill, R. A. and Stewart, A. 2004. A duplex-PCR bioassay to detect a Trichoderma virens biocontrol isolate in non-sterile soil. Soil Biology and Biochemistry, 36(12): 1955-1965. https://doi.org/10.1016/j.soilbio.2004.03.012.
Elkenawy, N. M., Yassin, A. S., Elhifnawy, H. N. and Amin, M. A. 2017. Optimization of prodigiosin production by Serratia marcescens using crude glycerol and enhancing production using gamma radiation. Biotechnology Reports, 14: 47-53. https://doi.org/10.1016/j.btre.2017.04.001.
El_Komy, M. H., Saleh, A. A., Eranthodi, A. and Molan, Y. Y. 2015. Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. The Plant Pathology Journal, 31(1): 50–60. https://doi.org/10.5423/PPJ.OA.09.2014.0087.
Gaafar, R. M., Elshanshory, A. R., Hamouda, M. and Diab, R. 2017. Effect of various doses gamma-radiation on phenotypic and molecular characteristics of two Egyptian soybean varieties. Egyptian Journal of Botany, 57(1): 199–216. https://doi.org/10.21608/ejbo.2017.431.1014.
Gajera, H. P., Bambharolia, R. P., Patel, S. V., Khatrani, T. J. and Goalkiya, B. A. 2012. Antagonism of Trichoderma spp. against Macrophomina phaseolina: Evaluation of coiling and cell wall degrading enzymatic activities. Journal of Plant Pathology and Microbiology, 3(7): 1-7. https://doi.org/10.4172/2157-7471.1000149.
Góes, L. B., Costa, A. B. L. D., Freire, L. L. C. and Oliveira, N. T. 2002. Randomly amplified polymorphic DNA of Trichoderma isolates and antagonism against Rhizoctonia solani. Brazilian Archives of Biology and Technology, 45(2): 151-160. https://doi.org/10.1590/S1516-89132002000200005.
Goharzad, F., Tajick Ghanbary, M. A., Shahbazi, S. and Askari, H. 2019. Two–dimensional and chitinase activity analysis of a novel mutant of Trichoderma koningii for biodegradation of Macrophomina phaseolina cell walls. Mycologia Iranica, 6(2): 73-87.
Goharzad, F., Tajick Ghanbary, M. A. and Shahbazi, S. 2020. Efficiency of biological fungicide prepared from mutant Trichoderma isolates on reducing of soybean charcoal rot disease damage. Applied Entomology and Phytopathology, 87(2): 209-226.
Golafrouz, H., Safaie, N. and Khelgatibana, F. 2020. The reaction of some apple rootstocks to biocontrol of white root rot Rosellinia necatrix by Trichoderma harzianum in greenhouse. Journal of Crop Protection, 9(4): 577-589.
Govindaraj, M., Vetriventhan, M. and Srinivasan, M. 2015. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genetics Research International, 2015: Article ID 431487, 14 pages. http://dx.doi.org/10.1155/2015/431487.
Gupta, V. K., Misra, A. K., Gupta, A., Pandey, B. K. and Gaur, R. K. 2010. RAPD-PCR of Trichoderma isolates and in vitro antagonism against Fusarium wilt pathogens of Psidium guajava L. Journal of Plant Protection Research, 50: 256-262. https://doi.org/10.2478/v10045-010-0045-x.
Haggag, W. M. and Mohamed, H. A. A. 2007. Biotechnological aspects of microorganisms used in plant biological control. American-Eurasian Journal of Sustainable Agriculture, 1(1): 7-12.
Haggag, W. M. and Mohamed, H. A. A. 2002. Enhancement of antifungal metabolites production from gamma-ray induced mutants of some Trichoderma species for control onion white rot disease. Plant Pathology Bulletin, 11: 45-56.
Iqbal, U. and Mukhtar, T. 2014. Morphological and pathogenic variability among Macrophomina phaseolina isolates associated with mungbean (Vignaradiata L.) Wilczek from Pakistan. The Scientific World Journal, 2014, Article ID 950175, 9 pages, http://dx.doi.org/10.1155/2014/950175.
Iqbal, U., Mukhtar, T., Iqbal, S. M., Ul-Haque, I. and Malik, S. R. 2010. Host plant resistance in blackgram against charcoal rot (Macrophomina phaseolina (Tassi) Goid). Pakistan Journal of Phytopathology, 22(1): 126-129.
Jones, C. and Kortenkamp, A. 2000. RAPD library fingerprinting of bacterial and human DNA: Applications in mutation detection. Teratogenesis, Carcinogenesis, and Mutagenesis, 20(2): 49-63. http://dx.doi.org/10.1002/(SICI)1520-6866(2000)20:2<49: AID-TCM1>3.0.CO;2-D.
Kaur, S., Dhillon, G. S., Brar, S. K., Vallad, G. E., Chand, R. and Chauhan, V. B. 2012. Emerging phytopathogen Macrophomina phaseolina: biology, economic importance and current diagnostic trends. Critical Reviews in Microbiology, 38(2): 136-151. http://dx.doi.org/10.3109/1040841X.2011.640977.
Khaledi, N. and Taheri, P. 2016. Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina. Journal of Plant Protection Research, 56: 21-31. https://doi.org/10.1515/jppr-2016-0004.
Khan, M. and Gupta, J. 1998. Antagonistic efficacy of Trichoderma species against Macrophomina phaseolina on eggplant. Zeitschrift fürPflanzenkrankheiten und Pflanzenschutz, 105: 387-393.
Kumar, K., Amaresan, N., Bhagat, S., Madhuri, K. and Srivastava, R. C. 2012. Isolation and characterization of Trichoderma spp. for antagonistic activity against root rot and foliar pathogens. Indian Journal of Microbiology, 52(2): 137-144. https://doi.org/10.1007/s12088-011-0205-3.
Kumar, M. and Sharma, P. 2011. Molecular and morphological characters: An appurtenance for antagonism in Trichoderma spp. African Journal of Biotechnology, 10(22): 4532-4543. https://doi.org/10.5897/AJB10.2089.
Kumari, N. and Thakur, S. K. 2014. Randomly amplified polymorphic DNA-a brief review. American Journal of Animal and Veterinary Sciences, 9(1): 6-13. https://doi.org/10.3844/ajavssp.2014.6.13.
Lava, A. and Babaeizad, V., Tajick Ghanbary, M. A. and Shahbazi, S. 2021. Effects of Trichoderma and endophytic fungus Piriformospora indica on cucumber physiology and Fusarium wilt disease of Cucumber. Annals of the Romanian Society for Cell Biology, 25(4): 20742-20755.
Li, S., Zheng, Y., Cui, H., Fu, H., Shu, Q. and Huang, J. 2016. Frequency and type of inheritable mutations induced by γ rays in rice as revealed by whole genome sequencing. Journal of Zhejiang University. Science. B, 17(12): 905–915. https://doi.org/10.1631/jzus.B1600125.
Matthews, R. W. 1982. Effect of temperature on the radiation induced reduction of dichromate ion. The International Journal of Applied Radiation and Isotopes, 33(6): 454-455.
Mendoza, J. L. H., Pérez, M. I. S., Prieto, J. M. G., Velásquez, J. D. Q., Olivares, J. G. G. and Langarica, H. R. G. 2015. Antibiosis of Trichoderma spp. strains native to northeastern Mexico against the pathogenic fungus Macrophomina phaseolina. Brazilian Journal of Microbiology, 46(4): 1093-1101. http://dx.doi.org/10.1590/S1517-838246420120177.
Mohamadi, A. S., Shahbazi, S. and Askari, H. 2014. Investigation of gamma-radiation on morphological characteristics and antagonist potential of Trichoderma viride against Rhizoctonia solani. International Research Journal of Applied and Basic Sciences, 8: 329-336.
Mohamed, H. A. A. and Haggag, W. M. 2006. Biocontrol potential of salinity tolerant mutants of Trichoderma harzianum against Fusarium oxysporum, causing tomato wilt disease. Brazilian Journal of Microbiology, 37(2): 175-185. http://dx.doi.org/10.1590/S1517-83822006000200016.
Mohamed, H. A. A., Haggag, W. M. and Attallah, A. G. 2010. Genetic enhancement of Trichoderma viride to overproduce different hydrolytic enzymes and their biocontrol potentiality against root rot and white mold diseases in bean plants. Agriculture and Biology Journal of North America, 1(3): 273-284. https://doi.org/10.5251/abjna.2010.1.3.273.284.
Moore, A., Challen, M. P., Warner, P. and Elliott, T. J. 2001. RAPD discrimination of Agaricus bisporus mushroom cultivars. Applied Microbiology and Biotechnology, 55(6): 742–749. https://doi.org/10.1007/s002530000588.
Najafi, N., Hosseini, R. and Ahmadi, A. R. 2011. Impact of gamma rays on the Phaffia rhodozyma genome revealed by RAPD-PCR. Iranian Journal of Microbiology, 3(4): 216-221.
Naseripour, T., Shahbazi, S. and Askari, H. 2014. The impact of γ-radiation on morphological characteristics and antagonist potential of Trichoderma harzianum against Rhizoctonia solani. International Journal of Agriculture and Crop Sciences, 7(8): 454-461.
Nath, V. S., John, N. S., Anjanadevi, I. P., Hegde, V. M., Jeeva, M. L., Misra, R. S. and Veena, S. S. 2014. Characterization of Trichoderma spp. antagonistic to Phytophthora colocasiae associated with leaf blight of taro. Annals of Microbiology, 64(4): 1513-1522. https://doi.org/10.1007/s13213-013-0794-7.
Orojnia, S., Habibi, D., Shahbazi, S., Paknejad, F. and Ilkaee, M. 2021. Investigation the Effect of Different Formulations of Mutated Trichoderma with Gamma Ray on Soybean Morphological Indices. Crop Physiology Journal, 12(48): 97-114.
Patil, A. S. and Lunge, A. G. 2012. Strain improvement of Trichoderma harzianum by UV mutagenesis for enhancing its biocontrol potential against aflotoxigenic Aspergillus species. The Experiment, 2: 228-242.
Rai, S., Kashyap, P. L., Kumar, S., Srivastava, A. K. and Ramteke, P. W. 2016. Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere. Springer Plus, 5(1): 1939. http://dx.doi.org/10.1186/s40064-016-3657-4.
Rayatpanah, S., Nanagulyan, S. G., Alav, S. V., Razavi, M. and Ghanbari-Malidarreh, A. 2012. Pathogenic and genetic diversity among Iranian isolates of Macrophomina phaseolina. Chilean Journal of Agricultural Research, 72(1): 40-44. http://dx.doi.org/10.4067/S0718-58392012000100007.
Rey, M., Delgado-Jarana, J. and Benitez, T. 2001. Improved antifungal activity of a mutant of Trichoderma harzianum CECT 2413 which produces more extracellular proteins. Applied Microbiology and Biotechnology, 55(5): 604-608. https://doi.org/10.1007/s002530000551.
Rezaee, S., Gharanjik, S. and Mojerlou, S. 2018. Identification of Fusarium solani f. sp. cucurbitae races using morphological and molecular approaches. Journal of Crop Protection, 7(2): 161-170.
Ribeiro, R., Magalhães, F., Aguiar, T. Q., Wiebe, M. G., Penttilä, M. and Domingues, L. 2013. Random and direct mutagenesis to enhance protein secretion in Ashbya gossypii. Bioengineered, 4(5): 322–331. https://doi.org/10.4161/bioe.24653.
Safaie, N., Alizadeh, A., Saidi, A., Rahimian, H. and Adam, G. 2005. Molecular characterization and genetic diversity among Iranian populations of Fusarium graminearum, the causal agent of wheat head blight. Iranian Journal of Plant Pathology, 41: 171-189.
Sahampoor, L., Zaker Tavallaie, F., Fani, S. R. and Shahbazi, S. 2020. In vitro efficiency of Trichoderma harzianum mutants in biocontrol of Fusarium oxysporum f. sp. radicis-cucumerinum. Journal of Crop Protection, 9(2): 285-300.
Schlick, A., Kuhls, K., Mayer, W., LieckFieldt, E., Börner, T. and Messner, K. 1994. Fingerprinting reveals gamma-ray induced mutations in fungal DNA: implications for identification of patent strains of Trichoderma harzianum. Current Genetics, 26(1): 74-78. https://doi.org/10.1007/bf00326307.
Schuster, A. and Schmoll, M. 2010. Biology and biotechnology of Trichoderma. Applied Microbiology and Biotechnology, 87(3): 787–799. https://doi.org/10.1007/s00253-010-2632-1.
Shahbazi, S., Karimi, M. and Ebrahimi, M. A. 2014. Investigation of sequence-tagged site (STS) in chitinase gene of gamma radiated Trichoderma viride isolates. International Journal of Farming and Allied Sciences, 3(11): 1129-1136.
Shahbazi, S., Zaker Tavallaie, F. and Daroodi, Z. 2021. Morphological and molecular identification of Fusarium spp. associated with carnation Dianthus caryophyllus in Mahallat, Iran. Journal of Crop Protection, 10(3): 461-471.
Shahid, S. and Khan, M. R. 2016. Biological control of root-rot on mungbean plants incited by Macrophomina phaseolina through microbial antagonists. Plant Pathology Journal, 15(2): 27-39. https://doi.org/10.3923/ppj.2016.27.39.
Sharfuddin, C. and Mohanka, R. 2012. In vitro antagonism of indigenous Trichoderma isolates against phytopathogen causing wilt of lentil. International Journal of Life Science and Pharma Research, 2: 195-202.
Sharma, A., Sehrawat, S., Singhrot, R. and Boora, K. 2005. Assessment of genetic diversity and relationship among Psidium spp. through RAPD analysis. In: International Guava Symposium, 735 (pp. 71-78).
Sharma, K, Mishra, A. K. and Misra, R. S. 2009. Morphological, biochemical and molecular characterization of Trichoderma harzianum isolates for their efficacy as biocontrol agents. Journal of Phytopathology, 157(1): 51–56. https://doi.org/10.1111/j.1439-0434.2008.01451.x.
Shathele, M. S. 2009. Effects of gamma irradiation on fungal growth and associated pathogens. Research Journal of Environmental Toxicology, 3(2): 94-100. https://doi.org/10.3923/rjet.2009.94.100.
Shoaib, A., Munir, M., Javaid, A., Awan, Z. A. and Rafiq, M. 2018. Anti-mycotic potential of Trichoderma spp. and leaf biomass of Azadirachta indica against the charcoal rot pathogen, Macrophomina phaseolina (Tassi) Goid in cowpea. Egyptian Journal of Biological Pest Control, 28(1): 1-7. https://doi.org/10.1186/s41938-018-0031-6.
Singh, H. B. 2014. Management of plant pathogens with microorganisms. Proceedings of the Indian National Science Academy, 80(2): 443-454. https://doi.org/10.16943/ptinsa/2014/v80i2/55120.
Singh, R., Maurya, S. and Upadhyay, R. S. 2012. Antifungal potential of Trichoderma species against Macrophomina phaseolina. Journal of Agricultural Technology, 8(6): 1925-1933.
Skoneczny. D., Oskiera, M., Szczech, M. and Bartoszewski, G. 2015. Genetic diversity of Trichoderma atroviride strains collected in Poland and identification of loci useful in detection of within-species diversity. Folia Microbiologica, 60(4): 297-307. https://doi.org/10.1007/s12223-015-0385-z.
Soufi, E., Safaie, N., Shahbazi, S. and Mojerlou, S. 2021. Gamma irradiation induces genetic variation and boosting antagonism in Trichoderma aureoviride. Archives of Phytopathology and Plant Protection, 1-26. https://doi.org/10.1080/03235408.2021.1936377.
Sreedevi, B., Charitha Devi, M. and Saigopal, D. V. R. 2011. Isolation and screening of effective Trichoderma spp. against the root rot pathogen Macrophomina phaseolina. Journal of Agricultural Technology, 7(3): 623-635.
Szekeres, A., Kredics, L., Antal, Z., Kevei, F. and Manczinger, L. 2004. Isolation and characterization of protease overproducing mutants of Trichoderma harzianum. Federation of European Microbiology Societies Microbiology Letters, 233(2): 215-222. https://doi.org/10.1111/j.1574-6968.2004.tb09485.x.
Taheri, S., Abdullah, T. L., Ahmad, Z. and Abdullah, N. A. P. 2014. Effect of acute gamma irradiation on Curcuma alismatifolia varieties and detection of DNA polymorphism through SSR marker. BioMed Research International, 2014: 245–256. http://dx.doi.org/10.1155/2014/631813.
Ubalua, A. O. and Oti, E. 2007. Antagonistic properties of Trichoderma viride on post-harvest cassava root rot pathogens. African Journal of Biotechnology, 6(21): 2447-2450. http://dx.doi.org/10.5897/AJB2007.000-2387.
Vannacci, G. and Gullino, M. L. 2000. Use of biocontrol agents against soil-borne pathogens: results and limitations. Acta Horticulturae, 532: 79-87. https://doi.org/10.17660/ActaHortic.2000.532.8.
Wang, P., Zhang, Y., Zhao, L., Mo, B. and Luo, T. 2017. Effect of gamma rays on Sophora davidii and detection of DNA polymorphism through ISSR marker. BioMed Research International, 2017: 1-6. https://doi.org/10.1155/2017/8576404.
Welsh, J. and McClelland, M. 1990. Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers. Nucleic Acids Research, 18: 7213–7218. https://doi.org/10.1093/nar/19.19.5275.
Williams, J., Kubelik, A. R. and Livak, K. J. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18(22): 6531–6535. https://doi.org/10.1093/nar/18.22.6531.
Yi, T. W., Keong, L. C. and Ibrahim, D. 2016. Enhancement of cellulolytic enzymes and xylanase production via classical mutational techniques under solid-state fermentation condition. Malaysian Journal of Microbiology, 12(1): 91-101. https://doi.org/10.21161/mjm.73315.