Cytochrome oxidase subunit I (COI) revealed differentiation among populations of Habrobracon hebetor collected from various regions of Iran

Volume 10, Issue 4
December 2021
Pages 597-613

Document Type : Original Research

Authors

1 Department of Entomology, Jahrom Branch, Islamic Azad University, Jahrom, Iran.

2 Plant Protection Research Department, Hormozgan Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran.

3 Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.

Abstract
Habrobracon hebetor Say (Hymenoptera: Braconidae) is an ectoparasitoid wasp in the family Braconidae and is widely used in biological pest control. Little information is available on the genetic diversity of geographically isolated populations of H. hebetor. In the present study, we assess the genetic structure and diversity of geographically distinct populations of H. hebetor collected from different regions of Iran. To this end, 19 populations of H. hebetor (Dehloran, Hamadan, Minab, Rudan, Ahvaz, Sari, Semnan, Bandar Lengeh, Haji Abbad, Jiroft, Shiraz, Sarpol-e Zahab, Gorgan, Isfahan, Urmia, Kahurestan, Taziyan, Isin, and Sarkhun) were collected from natural niches. For each population, we sequenced a ~660 base pair fragment of Cytochrome Oxidase subunit I (COI) successfully. Analysis of molecular variance revealed sharp differentiation among H. hebetor populations. Populations from Ahvaz, Dehloran, Jiroft and Minab were the most genetically diverged. A Mantel test showed significant positive correlation between genetic and geographic distances (r = 0.47, P < 0.001). The phylogenetic analysis clustered the populations into two major groups (A and B) (100); the major part was assigned to group A. Group B mainly included the populations from southern Iran. Based on these results, we conclude that H. hebetor in Iran is comprised of many diverse populations. These may be successfully applied in innundative release programs.

Keywords

Amir-Maafi, M. and Chi, H. 2006. Demography of Habrobracon hebetor (Hymenoptera: Braconidae) on two pyralid hosts (Lepidoptera: Pyralidae). Annals of the Entomological Society of America, 99:.84-90.
Antolin, M. F., Ode, P. J., Heimpel, G. E., O'Hara, R. B. and Strand, M. R. 2003. Population structure, mating system, and sex-determining allele diversity of the parasitoid wasp Habrobracon hebetor. Heredity 91:.373.
Askari Seyahooei, M., Bagheri, A., Bavaghar, M., Dousti, A. F. and Parichehreh, S. 2018a. Mating and carbohydrate feeding impacts on life-history traits of Habrobracon hebetor (Hymenoptera: Braconidae). Journal of Economic Entomology, 111: 2605-2610.
Askari Seyahooei, M., Mohammadi-Rad, A., Hesami, S. and Bagheri, A. 2018b. Temperature and exposure time in cold storage reshape parasitic performance of Habrobracon hebetor (Hymenoptera: Braconidae). Journal of Economic Entomology, 111: 564-569.
Badran, F., Fathipour, Y., Bagheri, A., Attaran, M. and Reddy, G. V. 2021. Generation-dependent functional and numerical responses of a naturally fungus-infected colony of Habrobracon hebetor (Hymenoptera: Braconidae) reared on Ephestia kuehniella (Lepidoptera: Pyralidae) in Iran. Journal of Economic Entomology, 114(1): 62-71.
Bagheri, A., Fathipour, Y., Askari-Seyahooei, M. and Zeinalabedini, M. 2018. Ommatissus lybicus (Hemiptera: Tropiduchidae), an economically important pest of date palm (Arecaceae) with highly divergent populations. Canadian Entomologist, 150: 378-392.
Bagheri, Z., Talebi, A. A., Asgari, S. and Mehrabadi, M. 2019. Wolbachia induce cytoplasmic incompatibility and affect mate preference in Habrobracon hebetor to increase the chance of its transmission to the next generation. Journal of Invertebrate Pathology, 163: 1-7.
Baker, D. A., Loxdale, H. D. and Edwards, O. R. 2003. Genetic variation and founder effects in the parasitoid wasp, Diaeretiella rapae (M’intosh)(Hymenoptera: Braconidae: Aphidiidae), affecting its potential as a biological control agent. Molecular Ecology, 12: 3303-3311.
Ballman, E. S., Rugman-Jones, P. F., Stouthamer, R. and Hoddle, M. S. 2011. Genetic structure of Graphocephala atropunctata (Hemiptera: Cicadellidae) populations across its natural range in california reveals isolation by distance. Journal of Economic Entomology, 104: 279-287.
Barbosa, N. C., Freitas, S. D. and Morales, A. C. 2014. Distinct genetic structure in populations of Chrysoperla externa (Hagen)(Neuroptera, Chrysopidae) shown by genetic markers ISSR and COI gene. Revista Brasileira de Entomologia, 58: 203-211.
Belda, C. and Riudavets, J. 2013. Natural enemies associated with lepidopteran pests in food and feed processing companies. Journal of Stored Products Research, 53:.54-60.
Braccia, A. and Voshell, J. R. 2005. Adaptations of aquatic insects to habitat and food resources in streams. in tested studies for laboratory teaching, proceedings of the 27th workshop/conference of the association for biology laboratory education (ABLE). Virginia tech, Blacksburg, VA, USA (pp. 1-13).
Branca, A., Le Ru, B., Calatayud, P.A., Obonyo, J., Musyoka, B., Capdevielle-Dulac, C., Kaiser-Arnauld, L., Silvain, J.F., Gauthier, J., Paillusson, C. and Gayral, P. 2019. Relative influence of host, Wolbachia, geography and climate on the genetic structure of the Sub-Saharan parasitic wasp Cotesia sesamiae. Frontiers in Ecology and Evolution, 7, p.309.
Brown, A. R., Hosken, D. J., Balloux, F., Bickley, L. K., LePage, G., Owen, S. F., Hetheridge, M. J. and Tyler, C. R. 2009. Genetic variation, inbreeding and chemical exposure-combined effects in wildlife and critical considerations for ecotoxicology. Philosophical transactions of the Royal Society of London. 364: 3377-3390.
Chang, X., Zhong, D., Lo, E., Fang, Q., Bonizzoni, M., Wang, X., Lee, M. C., Zhou, G., Zhu, G., Qin, Q. and Chen, X. 2016. Landscape genetic structure and evolutionary genetics of insecticide resistance gene mutations in Anopheles sinensis. Parasites and Vectors 9: p.228.
Chen, M., Shelton, A. and Ye, G. Y. 2011. Insect-resistant genetically modified rice in China: from research to commercialization. Annual Review of Entomology, 56: 81-101.
Cifuentes, D., Chynoweth, R. and Bielza, P. 2011. Genetic study of mediterranean and south American populations of tomato leafminer Tuta absoluta (Povolny, 1994)(Lepidoptera: Gelechiidae) using ribosomal and mitochondrial markers. Pest Management Science, 67: 1155-1162.
Chomphukhiao, N., Takano, S. I., Takasu, K. and Uraichuen, S. 2018. Existence of two strains of Habrobracon hebetor (Hymenoptera: Braconidae): a complex in Thailand and Japan. Applied Entomology and Zoology, 53: 373-380.
Clement, M., Posada, D. and Crandall, K. A. 2000. TCS: a computer program to estimate genegenealogies. Molecular Ecology, 9: 1657-1660.
Costa, C. P., da Silva Machado, C. A. and Francoy, T. M. 2021. Assessment of genetic diversity and population structure of Eulaema nigrita (Hymenoptera: Apidae: Euglossini) as a factor of habitat type in Brazilian Atlantic forest fragments. The Canadian Entomologist, pp.1-15.
Cuthbert, R. N., Dalu, T., Wasserman, R. J., Weyl, O. L., Froneman, P. W., Callaghan, A. and Dick, J.T. 2020. Inter-population similarities and differences in predation efficiency of a mosquito natural enemy. Journal of Medical Entomology, 57(6): 1983-1987.
Dorchin, N., Scott, E. R., Clarkin, C. E., Luongo, M. P., Jordan, S. and Abrahamson, W. G. 2009. Behavioural ecological and genetic evidence confirm the occurrence of host‐associated differentiation in goldenrod gall‐midges. Journal of Evolutionary Biology, 22: 729-739.
Excoffier, L. and Lischer, H. E. L. 2010. Arlequin suite ver3.5: a new series of programs to perform population genetic analyses under linux and window. Molecular Ecology Resources, 10: 564-567.
Faccoli, M., Piscedda, A., Salvato, P., Masutti, L. and Battisti, A. 2005. Genetic structure and phylogeography of pine shoot beetle populations (Tomicus destruens and T. piniperda, Coleoptera Scolytidae) in Italy. Annals of Forest Science, 62: 361-368
Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3: 294-299.
Franck, P. and Timm, A. E. 2010. Population genetic structure of Cydia pomonella: a review and case study comparing spatiotemporal variation. Journal of Applied Entomology, 134: 191-200.
Frankel, O. and Soulé, M. E. 1981. Conservation and evolution. CUP archive.
Frankham, R. 2003. Genetics and conservation biology. C R Biol 326: pp.22-29.
Garba, M., Loiseau, A., Tatard, C., Benoit, L. and Gauthier, N. 2019. Patterns and drivers of genetic diversity and structure in the biological control parasitoid Habrobracon hebetor in Niger. Bulletin of Entomological Research, 1-18.
Grenier, S. 1988. Applied biological control with tachinid flies (Diptera, Tachinidae): a review. Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz, 61: 49-56.
Hedrick, P. W., Ginevan, M. E. and Ewing, E. P. 1976. Genetic polymorphism in heterogeneous environments. Annual Review of Ecology and Systematics, 7(1): 1-32.
Heimpel, G. E., Antolin, M. F., Franqui, R. A. and Strand, M. R. 1997. Reproductive isolation and genetic variation between two “strains” of Bracon hebetor (Hymenoptera: Braconidae). Biological Control, 9: 149-156
Hoffmann, A. A., Sgro, C. M. 2011. Climate change and evolutionary adaptation Nat. 470: p.479
Ito, K., Nishikawa, H., Shimada, T., Ogawa, K., Minamiya, Y., Tomoda, M., Nakahira, K., Kodama, R., Fukuda, T. and Arakawa, R. 2011. Analysis of genetic variation and phylogeny of the predatory bug, Pilophorus typicus, in Japan using mitochondrial gene sequences. Journal of Insect Science, 11: p.18
Jensen, J. L., Bohonak, A.J. and Kelley, S. T. 2005. Isolation by distance, web service. BMC genetics 6: p.13
Kavar, T., Pavlovčič, P., Sušnik, S., Meglič, V. and Virant-Doberlet, M. 2006. Genetic differentiation of geographically separated populations of the southern green stink bug Nezara viridula (Hemiptera: Pentatomidae). Bulletin of Entomological Research, 96: 117-128
Kazachkova, N., Meijer, J. and Ekbom, B. 2008. Genetic diversity in European pollen beetle, Meligethes aeneus (Coleoptera: Nitidulidae), populations assessed using AFLP analysis. European Journal of Entomology, 105(5).
Kil, V. I., Balaban, A. T., Besedina, E. N., Agasieva, I. S. and Ismailov, V. Y. 2018. Identification of Habrobracon hebetor populations using RAPD markers. Russian Agricultural Sciences, 44(5): 449-453.
Koohpayma, F., Fallahzadeh, M., Bagheri, A., Askari Seyahooei, M., Fathipour, Y. and Dousti, A. 2019. Climatically isolated populations of Habrobracon hebetor Say (Hymenoptera: Braconidae) demonstrate striking differences in life history traits. Journal of Crop Protection, 22:747-57.
Kumar, S., Nei, M., Dudley, J. and Tamura, K. 2008. MEGA: a Biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics. 9: 299-306.
Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution, 16: 750-759.
de León, J. H. and Jones, W. A. 2005. Genetic differentiation among geographic populations of Gonatocerus ashmeadi (Hymenoptera: Mymaridae), the predominant egg parasitoid of Homalodisca coagulata (Homoptera: Cicadellidae). Journal of Insect Science, 5(2), p.9.
van Lenteren, J. C. 2000. Success in biological control of arthropods by augmentation of natural enemies. In Biological control: measures of success. Springer, Dordrecht. pp. 77-103.
Lewter, J. A., Szalanski, A. L., Nagoshi, R. N., Meagher Jr, R. L., Owens, C. B. and Luttrell, R. G. 2006. Genetic variation within and between strains of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Florida Entomological, .63-68.
Liang, H. H., Cheng, Z., Yang, X. L., Li, S., Ding, Z. Q., Zhou, T. S., Zhang, W. J. and Chen, J.K. 2008. Genetic diversity and structure of Cordyceps sinensis populations from extensive geographical regions in China as revealed by inter-simple sequence repeat markers. The Journal of Microbiology, 46(5): 549-556.
Librado, P. and Rozas, J. 2009. DnaSP v5: a softwarefor comprehensive analysis of DNA polymorphism data. Bioinformatics. 25: 1451-1452.
Loaiza, J. R., Scott, M. E., Bermingham, E., Rovira, J. and Conn, J. E. 2010. Evidence for pleistocene population divergence and expansion of Anopheles albimanus in southern central America. American Journal of Tropical Medicine and Hygiene, 82: 156-164.
Lozier, J. D., Roderick, G. K. and Mills, N. J. 2009. Molecular markers reveal strong geographic, but not host associated, genetic differentiation in Aphidius transcaspicus, a parasitoid of the aphid genus Hyalopterus. Bulletin of Entomological Research, 99: 83-96.
Mangan, R., Carolan, J. C. and Baars, J. R. 2019. Molecular characterization of Hydrellia lagarosiphon, a leaf mining biological control agent for Lagarosiphon major, reveals weak variance across large geographic areas in South Africa. Biological Control, 132: 8-15.
Meng, X. F., Shi, M. I. N. and Chen, X. X. 2008. Population genetic structure of Chilo suppressalis (Walker)(Lepidoptera: Crambidae): strong subdivision in China inferred from microsatellite markers and mtDNA gene sequences. Molecular Ecology, 17: 2880-2897.
Mezghani‐Khemakhem, M., Bouktila, D., Kharrat, I., Makni, M. and Makni, H. 2012. Genetic variability of green citrus aphid populations from Tunisia, assessed by RAPD markers and mitochondrial DNA sequences. Entomological Science, 15: 171-179.
Mugerwa, H., Rey, M. E., Alicai, T., Ateka, E., Atuncha, H., Ndunguru, J. and Sseruwagi, P. 2012. Genetic diversity and geographic distribution of Bemisia tabaci (G ennadius)(H. emiptera: Aleyrodidae) genotypes associated with Cassava in East Africa. Ecology and Evolution, 2: 2749-2762.
Muirhead, K. A., Murphy, N. P., Sallam, N., Donnellan, S. C. and Austin, A. D. 2012. Phylogenetics and genetic diversity of the Cotesia flavipes complex of parasitoid wasps (Hymenoptera: Braconidae), biological control agents of lepidopteran stemborers. Molecular Phylogenetics and Evolution, 63: 904-914.
Nevo, E. 1988. Genetic diversity in nature. Evolutionary biology, 217-246.
Nylander, J. A. A. 2004. MrModeltest v2. 3 software. evolutionary biology center, uppsala university, sweden. available from: http://www. abc. se/~ nylander/mrmodeltest2/mrmodeltest2. Html.
Oluwafemi, A. R., Rao, Q., Wang, X. Q. and Zhang, H. Y. 2009. Effect of Bacillus thuringiensis on Habrobracon hebetor during combined biological control of Plodia interpunctella. Insect Science, 16: 409-416.
Palomera, V., Bertin, S., Rodríguez, A., Bosco, D., Virla, E. and Moya-Raygoza, G. 2012. Is there any genetic variation among native Mexican and Argentinian populations of Dalbulus maidis (Hemiptera: Cicadellidae)?. Florida Entomologist, 95: 150-156.
Paradis, E., Claude, J. and Strimmer, K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289-290.
Penton, E. H., Hebert, P. D. N. and Crease, T. J. 2004. Mitochondrial DNA variation in north American populations of Daphnia obtuse: continentalismor cryptic endemism? Molecular Ecology, 13: 97-107.
Phillips, C. B., Vink, C. J., Blanchet, A. and Hoelmer, K. A. 2008. Hosts are more important than destinations: What genetic variation in Microctonus aethiopoides (Hymenoptera: Braconidae) means for foreign exploration for natural enemies. Molecular Phylogenetics and Evolution, 49: 467-476.
Piiroinen, S., Lindström, L., Lyytinen, A., Mappes, J., Chen, Y. H., Izzo, V. and Grapputo, A. 2013. Pre-invasion history and demography shape the genetic variation in the insecticide resistance-related acetylcholinesterase 2 gene in the invasive Colorado potato beetle. BMC Evolutionary Biology, 13: p.13.
Rauth, S. J., Hinz, H. L., Gerber, E. and Hufbauer, R. A. 2011. The benefits of pre-release population genetics: a case study using Ceutorhynchus scrobicollis, a candidate agent of garlic mustard, Alliaria petiolata. Biol Control, 56: 67-75.
Reineke, A., Karlovsky, P. and Zebitz, C. P. W. 1998. Preparation and purification of DNA from insects for AFLP analysis. Insect Molecular Biology,7: 95-99.
Roderick, G. K. 1996. Geographic structure of insect populations: gene flow, phylogeography, and their uses. Annual Review of Entomology, 41: 325–352. doi: 10.1146/annurev.en.41.010196.001545.
Ronquist, F. and Huelsenbeck, J. P. 2003. MrBayes 3:bayesian phylogenetic iference under mixed models. Bioinformatics 19: 1572-1574.
Saadat, D., Seraj, A. A., Goldansaz, S. H. and Williams III, L. 2016. Factors affecting reproductive success and life history parameters of Bracon hebetor Say (Hymenoptera: Braconidae) from three host-associated populations. Biological Control, 96:.86-92.
Samara, R., Monje, J. C., Reineke, A. and Zebitz, C. P. W. 2008. Genetic divergence of Trichogramma aurosum Sugonjaev and Sorokina (Hymenoptera: Trichogrammatidae) individuals based on ITS2 and AFLP Analysis. Journal of Applied Entomology, 132: 230-238.
Schroer, S., Pemberton, R. W., Cook, L. G., Kondo, T. and Gullan, P. J. 2008. The Genetic diversity, relationships, and potential for biological control of the lobate lac scale, Paratachardina pseudolobata Kondo & Gullan (Hemiptera: Coccoidea: Kerriidae). Biological Control, 46: 256-266.
Schutze, M. K., Mather, P. B. and Clarke, A. R. 2006. Species status and population structure of the Australian eucalyptus pest Paropsis atomaria Olivier (Coleoptera: Chrysomelidae). Agricultural and Forest Entomology, 8: 323-332.
Smith, P. J. and Gaffney, P. M. 2005. Low genetic diversity in the Antarctic toothfish (Dissostichus mawsoni) observed with mitochondrial and intron DNA markers. CCAMLR Sci. 12: 43-51.
Spielman, D., Brook, B. W., Briscoe, D. A. and Frankham, R. 2004. Does inbreeding and loss of genetic diversity decrease disease resistance?. Conservation Genetics, 5: 439-448.
Taylor, S. J., Downie, D. A. and Paterson, I. D. 2011. Genetic diversity of introduced populations of the water hyacinth biological control agent Eccritotarsus catarinensis (Hemiptera: Miridae). Biological Control, 58: 330-336.
Templeton, A. R., Crandall, K. A. and Sing, C. F. 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA Sequence Data III. cladogram estimation. Genetics, 132: 619-633.
Timmermans, M. J. T. N., Ellers, J., Marien, J., Verhoef, S. C., Ferwerda, E. B. and van Straalen, N. M. 2005. Genetic structure in Orchesella cincta (Collembola): strong subdivision of European populations inferred from mtDNA and AFLP markers. Molecular Ecology, 14: 2017-2024.
van Straalen, N. M. and Timmermans, M. J. 2002. Genetic variation in toxicant-stressed populations: an evaluation of the “genetic erosion” hypothesis. Human and Ecological Risk Assessment, 8: 983-1002.
Uddin, M. M. and Tsuchida, K. 2012. Genetic population structure of the paper wasp Polistes olivaceus (Hymenoptera: Vespidae) in Bangladesh. Population Ecology, 54: 103-114.
Vorsino, A. E., Wieczorek, A. M., Wright, M. G. and Messing, R. H. 2012. Using evolutionary tools to facilitate the prediction and prevention of host‐based differentiation in biological control: a review and perspective. Annals of Applied Biology, 160: 204-216.
Wachi, N., Gau, J. J., Fujie, S., Fukano, K. and Maeto, K. 2021. Genomic population structure of sympatric sexual and asexual populations in a parasitic wasp, Meteorus pulchricornis (Hymenoptera: Braconidae), inferred from six hundred single‐nucleotide polymorphism loci. Molecular Ecology, 30: 1612-1623.
Wajnberg, E. 2004. Measuring genetic variation in natural enemies used for biological control: why and how. Genetics, Evolution and Biological Control, pp.19-37.
Weir, B. S. and Cockerham, C. C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38: 1358-1370.
Williams, H. C., Ormerod, S. J. and Bruford, M. W. 2006. Molecular systematics and phylogeography of the cryptic species complex Baetis rhodani (Ephemeroptera, Baetidae). Molecular Phylogenetics and Evolution, 40: pp.370-382.
Zhou, M. J., Xiao, J. H., Bian, S. N., Li, Y. W., Niu, L. M., Hu, H. Y., Wu,W. S., Murphy, R. W. and Huang, D. W. 2012. Molecular approaches identify known species, reveal cryptic species and verify host specificity of Chinese philotrypesis (Hymenoptera: Pteromalidae). Molecular Ecology Resources, 12: 598-606.