Isolation and identification of lignin-degrading bacteria with laccase activity from the gut of the leopard moth, Zeuzera pyrina (Lepidoptera: Cossidae)

Volume 10, Issue 1
March 2021
Pages 41-49

Document Type : Original Research

Authors

1 Department of Plant Protection, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.

2 Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.

Abstract
Gut bacterial symbionts have an essential role in the nutrition and fitness of xylophagous insects. These bacteria produce several enzymes like cellulase and laccase which are important in industrial applications. In this study, laccase-producing bacteria were isolated and identified from the gut of the wood borer leopard moth. Four novel laccase positive strains were isolated using guaiacol-containing agar plates. Among the strains of dc4f, le2f, lc2, and lb8, the strain le2f displayed high laccase activity of 0.059 U ml-1 toward syringaldazine as a typical laccase substrate. The isolates were identified based on biochemical tests and 16S rRNA gene sequencing analyses. Nucleotide BLAST analyses of 16S rRNA gene sequence exhibited that the strains of dc4f, lb8, lc2, and le2f, had the most similarity (with more than 98% identity) with Enterobacter sp. strain W-6 16S (ACCN: MK505390), Serratia liquefaciens strain N112 (ACCN: MK629784), Brevibacterium sp. strain 773 (ACCN: MH777897) and Staphylococcus sciuri strain KSI 708 (ACCN: KC113150), respectively. Overall, the current study is the first research on alkaliphilic bacterial strains from the gut of leopard moth with laccase activity.

Keywords

Antonopoulos, V., Hernandez, M., Arias, M., Mavrakos, E. and Ball, A. 2001. The use of extracellular enzymes from Streptomyces albus ATCC 3005 for the bleaching of eucalyptus kraft pulp. Applied microbiology and biotechnology, 57(1-2): 92-97.
Ashtari, M., Karimi, J., Rezapanah, M. R. and Hassani-Kakhki, M. 2011. Biocontrol of leopard moth, Zeuzera pyrina L.(Lep.: Cossidae) using entomopathogenic nematodes in Iran. IOBC/wprs Bulletin, 66: 333-335.
Cartwright, N. and Holdom, K. 1973. Enzymic lignin, its release and utilization by bacteria. Microbios, 8(29):7-14.
Chen, H. 2014. Chemical composition and structure of natural lignocellulose. Biotechnology of lignocellulose. Springer.
Clarke, A. and Trinnaman, J. 2004. Survey of Energy Resources, World Energy Council. London, UK, Elsevier international, accessed, 11(4): 2008.
Couto, S. R. & Herrera, J. L. T. 2006. Industrial and biotechnological applications of laccases: a review. Biotechnology advances, 24(5): 500-513.
Dien, B., Cotta, M. and Jeffries, T. 2003. Bacteria engineered for fuel ethanol production: current status. Applied microbiology and biotechnology, 63(3): 258-266.
Engel, P. and Moran, N. A. 2013. The gut microbiota of insects–diversity in structure and function. FEMS microbiology reviews, 37(5): 699-735.
Eutick, M., O'brien, R. and Slaytor, M. 1978. Bacteria from the gut of Australian termites. Applied and Environmental Microbiology, 35(5): 823-828.
Garrity, G. M. 2012. Bergey's Manual of Systematic Bacteriology: Volume 1: The Archaea and the Deeply Branching and Phototrophic Bacteria: Springer Science & Business Media.
Grbic‐Galic, D. 1986. O‐Demethylation, dehydroxylation, ring‐reduction and cleavage of aromatic substrates by Enterobacteriaceae under anaerobic conditions. Journal of applied bacteriology, 61(6): 491-497.
Henry, L. M., Maiden, M. C., Ferrari, J. and Godfray, H. C. J. 2015. Insect life history and the evolution of bacterial mutualism. Ecology letters, 18(6): 516-525.
Hergert, H. 1971. Lignins: occurrence, formation, structure and reactions. by KV Sarkanen and CH Ludwig, Wiley-Interscience, pp. 267.
Hu, X., Yu, J., Wang, C. and Chen, H. 2014. Cellulolytic bacteria associated with the gut of Dendroctonus armandi larvae (Coleoptera: Curculionidae: Scolytinae). Forests, 5(3): 455-465.
Jönsson, L. J., Alriksson, B. and Nilvebrant, N.-O. 2013. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for biofuels, 6(1): 16.
Kim, O.-S., Cho, Y.-J., Lee, K., Yoon, S.-H., Kim, M., Na, H., Park, S.-C., Jeon, Y. S., Lee, J.-H. and Yi, H. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. International journal of systematic and evolutionary microbiology, 62(3): 716-721.
Krishnan, M., Bharathiraja, C., Pandiarajan, J., Prasanna, V. A., Rajendhran, J. and Gunasekaran, P. 2014. Insect gut microbiome–An unexploited reserve for biotechnological application. Asian Pacific journal of tropical biomedicine, 4: 16-21.
Martínez, Á. T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., Martínez, M. J., Gutiérrez Suárez, A. and Río Andrade, J. C. d. 2005. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8:195-204.
Murray, R. 1994. Determinative and cytological light microscopy. Methods for general and molecular bacteriology, pp. 7-20.
Nimchua, T., Thongaram, T., Uengwetwanit, T., Pongpattanakitshote, S. and Eurwilaichitr, L. 2012. Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes. Journal of Microbiology and Biotechnology, 22(4): 462-469.
Paniagua Voirol, L. R., Frago, E., Kaltenpoth, M., Hilker, M. and Fatouros, N. E. 2018. Bacterial symbionts in lepidoptera: Their diversity, transmission, and impact on the host. Frontiers in microbiology, 9: 556.
Prasad, R. K., Chatterjee, S., Sharma, S., Mazumder, P. B., Vairale, M. G. and Raju, P. S. 2018. Insect Gut Bacteria and Their Potential Application in Degradation of Lignocellulosic Biomass: A Review. Bioremediation: Applications for Environmental Protection and Management. Springer.
Rezaei, S., Shahverdi, A. R. and Faramarzi, M. A. 2017. Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp. Bioresource technology, 230: 67-75.
Rizzi, A., Crotti, E., Borruso, L., Jucker, C., Lupi, D., Colombo, M. and Daffonchio, D. 2013. Characterization of the bacterial community associated with larvae and adults of Anoplophora chinensis collected in Italy by culture and culture-independent methods. BioMed research international.
Salari, E., Karimi, J., Sadeghi-Nameghi, H. and Hosseini, M. 2015. Efficacy of two entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae for control of the leopard moth borer Zeuzera pyrina (Lepidoptera: Cossidae) larvae under laboratory conditions. Biocontrol science and technology, 25(3): 260-275.
Siroosi, M., Amoozegar, M. A. and Khajeh, K. 2016. Purification and characterization of an alkaline chloride-tolerant laccase from a halotolerant bacterium, Bacillus sp. strain WT. Journal of Molecular Catalysis B: Enzymatic, 134: 89-97.
Sun, J. Z. and Scharf, M. E. 2010. Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Science, 17(3): 163-165.
Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology, 173(2): 697-703.
Wood, W. A. and Krieg, N. R. 1989. Methods for general and molecular bacteriology: ASM Press, Washington DC.
Zhou, H., Guo, W., Xu, B., Teng, Z., Tao, D., Lou, Y. and Gao, Y. 2017. Screening and identification of lignin-degrading bacteria in termite gut and the construction of LiP-expressing recombinant Lactococcus lactis. Microbial pathogenesis, 112: 63-69.