Effect of short-term high temperature stress on demographic parameters of Plutella xylostella (Lepidoptera: Plutellidae)

Volume 9, Issue 3
September 2020
Pages 507-522

Document Type : Original Research

Authors

1 Entomology Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.

2 Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.

Abstract
Organisms are often exposed to various stresses such as heat. The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) is a serious pest of cruciferous crops in Iran and the world. The effect of short-term temperature stress on egg stage of P. xylostella and its demographic parameters were studied under laboratory conditions. Diamondback moth eggs were exposed to 30, 35 and 40 °C for durations of 2, 4, 6, 8 h and then returned to normal temperature condition (25 °C). The results showed that P. xylostella eggs successfully developed to adulthood at short-term (2, 4, 6 and 8 h) high temperatures stress. The ovipositional period was significantly longer at 30 °C for 8 h, 35 °C for 2 h and 40 °C for 4 h than for other periods of stress. There is a significant difference in the net reproduction rate (R0) among the short-term high temperature stresses treatments. The highest and lowest R0 was obtained at 30 °C for 8 and 4 h, respectively. The intrinsic rate of increase (rm) was also found to be significantly affected by stress temperatures. The rm-value ranged from 0.15 ± 0.009 (30 °C for 4 h) to 0.22 ± 0.004 (35 °C for 8 h). Knowledge of the effect of temperature on demographic parameters of P. xylostella could be useful in the integrated pest management for forecasting the population dynamics of this economic pest of brassicas, thereby reducing insecticide inputs, negative environmental impacts and saving hundreds of millions of dollars annually.

Keywords

Anderson, J. F. and Horsfall, W. R. 1963. Thermal stress anomalous development of mosquitoes (Diptera: Culicidae). I. Effect of constant temperature of dimorphism of adults of Aedes stimulans. Journal of Experimental Biology, 154: 67-107. Available from: https://doi.org/10.1002/jez.1401540106.
Andrewartha, H. G. 1970. Introduction to the study of animal populations. University of Chicago Press, Chicago, IL. Available from: https://doi.org/10.1007/978-1-4613-3324-1.
Andrewartha, H. G. and Brich, L. C. 1954. The distribution and abundance of animal. University of Chicago Press, Chicago, p 782.
Arbogast, R. T. 1981. “Mortality and reproduction of Ephestia cautella and Plodia interpunctella exposed as pupae to high temperatures.” Envitomental Entomology 10 (5): 708-711. Available from: https://doi.org/10.1093/ee/10.5.708.
Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C. S., Bezemer, T. M., Brown, V. K., Butterfield, J., Buse, A., Coulson, J. C., Farrar, J., Good, J. E. G., Harrington, R., Hartley, S., Jones, T. H., Lindroth, R. L., Press, M. C., Symrnioudis, I., Watt, A. D., Whittaker, J. B. 2002. ‘Herbivory in global climate change research: direct effects of rising temperature on insect herbivores’. Global Change Biology, 8: 1-16. Available from: https://doi.org/10.1046/j.1365-2486.2002.00451.x.
Bird, J. M. and Hodkinson, I. D. 1999. ‘Species at the edge of their range: the significance of the thermal environment for the distribution of congeneric Craspedolepta species (Sternorrhyncha: Psylloidea) living on Chamerion angustifolium (Onagraceae). European Journal of Entomology, 96: 103-109.
Brich, L. C. 1948. The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology, 17: 15-26. Available from: https://doi.org/10.2307/1605.
Carey, J. R. 1993. Applied demography for biologists with special emphasis on insects. Oxford University Press, New York, p. 224.
Carey, J. R. 2001. Insect bio demography. Annual Review of Entomology, 46: 79-110. Available from: https://doi.org/10.1146/annurev.ento.46.1.79.
Chapman, J. W., Reynolds, D. R., Smith, A. D., Riley, J. R., Pedgley, D. E. and Woiwod, I. P. 2002. High altitude migration of the diamondback moth Plutella xylostella to the UK: a study using radar, aerial netting, and ground trapping. Ecological Entomology, 27: 641-650. Available from: https://doi.org/10.1046/j.1365-2311.2002.00472.x.
Chapman, R. F. 1998. The Insects: Structure and function. 4th edition. Cambridge University Press, Cambridge, United Kingdom, p. 770. Available from: https://doi.org/10.1017/CBO9780511818202.
Chihrane, J. and Lauge, G. 1994. Effects of high-temperature shocks on male germinal cells of Trichogramma brassicae (Hymenoptera: Trichogrammatidae). Entomophaga, 39: 11-20. Available from: https://doi.org/10.1007/BF02373490.
Chihrane, J. and Lauge, G. 1997. Thermo sensitivity of germ lines of Trichogramma brassicae Bezdenko (Hymenoptera) implications for efficacy of the parasitoid. Canadian Journal of Zoology, 75: 484-489. Available from: https://doi.org/10.1139/z97-059.
Chu, Y. 1986. The migration of the diamondback moth, In: Talekar, N.S, Greggs, T.D. (Eds.), Diamondback moth management: Proceedings of the First International Workshop. Tainan, Taiwan, 1986: pp. 77-81. Asian Vegetable Research and Development Center, Shanhua, Taiwan.
Cossins, A. R. and Bowler, K. 1987. Temperature Biology of Animals. Chapman and Hall, New York, p 327. Available from: https://doi.org/10.1007/978-94-009-3127-5.
Coulson, S. J., Hodkinson, I. D., Webb, N. R., Mikkola, K., Harrison, J. A. and Pedgley, D. E. 2002. Aerial colonization of high Arctic islands by invertebrates: the diamondback moth Plutella xylostella (Lepidoptera: Yponomeutidae) as a potential indicator species. Diversity and Distributions, 8: 327-334. Available from: https://doi.org/10.1046/j.1472-4642.2002.00157.x.
Cui, X. H., Wan, F. H., Xie, M. and Liu, T. X. 2008. ‘Effects of heat shock on survival and reproduction of two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B’. Journal of Insect Science, 8 (4): 1-10. Available from: https://doi.org/10.1673/031.008.2401.
Dan, J. G., Pang, X. F. and Liang, G. W. 1995. Studies on the laboratory population of diamondback moth under different temperatures. Journal of South China Agricultural University, 16(3): 11-16.
Denlinger, D. L. and Hallman, G. J. 1998. Physiology of heat sensitivity, In: Hallman, G.J, Denlinger, D.L, (Eds.), Temperature sensitivity in insects and application in integrated pest management. Westview Press, Boulder, CO, pp. 7-57. Available from: https://doi.org/10.1201/9780429308581-2.
Denlinger, D. L., Joplin, K. H., Chen, C. P. and Lee, R. E. 1991. ‘Cold shock and heat shock’, In: Lee, R.E, Denlinger, D.L, (Eds.), Insects at low temperature. Chapman and Hall, New York, pp. 131-148. Available from: https://doi.org/10.1007/978-1-4757-0190-6_6.
Economopoulos, A. P. 1996. ‘Quality control and SIT field testing with genetic sexing Mediterranean fruit fly males’, In Fruit Fly Pests: McPheron, B.A, Steck Delray Beach, F.L, (Eds.), A world assessment of their biology and management, St. Lucie Press, pp. 385-389.
Fields, P. G. 1992. ‘The control of stored-product insects and mites with extreme temperatures’. Journal of Stored Products Research, 28: 89-118. Available from: https://doi.org/10.1016/0022-474X(92)90018-L.
Geng, J. H., Shen, Z. R., Li, Z. X. and Zhang, F. 2005. Effects of high temperature shocks on Trichogramma dendrolomireared on Antheraea pernyieggs. Chinese Journal of Biological Control, 24: 222-226.
Golizadeh, A., Kamali, K., Fathipour, Y. and Abbasipour, H. 2009. Effect of temperature on life table parameters of Plutella xylostella (Lepidoptera: Plutellidae) on two brassicaceous host plants. Journal of Asia-Pacific Entomology, 12: 207-212. Available from: https://doi.org/10.1016/j.aspen.2009.05.002.
Gullan, P. J. and Cranston, P. S. 2005. The insects: An Outline of Entomology. 3th edition. Blackwell Publishing Ltd, Hoboken, USA, p. 505.
Hallman, G. J. and Denlinger, D. L. 1998. Introduction: temperature sensitivity and integrated pest management. In: Hallman, G.J, Denlinger, D.L, (Eds.), Temperature sensitivity in insects and application in integrated pest management. Westview Press, Boulder, CO, pp. 1-5. Available from: https://doi.org/10.1201/9780429308581-1.
Harrington, R., Woiwod, I. and Sparks, T. 1999. ‘Climate change and trophic interactions'. Trends. Ecology and Evolution, 14: 146-150. Available from: https://doi.org/10.1016/S0169-5347(99)01604-3.
Henle, K. J. and Warters, R. L. 1982. ‘Heat protection by glycerol in vitro’. Cancer Research, 42: 2171-2176.
Hoffmann, A. A. and Parsons, P. A. 1991. Evolutionary genetics and environmental stress. Oxford University Press, New York, pp. 284.
Hoffmann, A. A., Sørensen, J. G. and Loeschcke, V. 2003. Adaptation of drosophila to temperature extremes: bringing together quantitative and molecular approaches. Journal of Thermal Biology, 28: 175-216. Available from: https://doi.org/10.1016/S0306-4565(02)00057-8.
Honda, K. 1990. Hibernation and migration of diamondback moth in northern Japan. In: Talekar, N.S, Greggs, T.D, (Eds.), Diamondback moth and other crucifer pests: Proceedings of the Second International Workshop, Tainan, Taiwan, pp. 43-50.
Honda, K., Miyahara, Y. and Kegasawa, K. 1992. Seasonal abundance and the possibility of spring immigration of the diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Yponomeutidae), in Morioka City, northern Japan. Journal of Applied Entomology and Zoology, 27: 517-525. Available from: https://doi.org/10.1303/aez.27.517.
Horiwitz, A. R. and Gerling, D. 1992. Seasonal variation of sex ratio in Bemisia tabacion cotton in Israel. Environmental Entomology, 21: 556-559. Available from: https://doi.org/10.1093/ee/21.3.556.
Howe, R. W. 1967. Temperature effects on embryonic development in insects. Annual Review of Entomology, 12: 15-42. Available from: https://doi.org/10.1146/annurev.en.12.010167.000311.
Jørgensen, K. T., Sørensen, J. G. and Bundgaard, J. 2006. Heat tolerance and the effect of mild heat stress on reproductive characters in Drosophila buzzatii males. Journal of Thermal Biology, 31: 280-286. Available from: https://doi.org/10.1016/j.jtherbio.2005.11.026.
Krainacker, D. A. and Carey, J. R. 1988. Maternal heterogeneity in primary sex ratio of three tetranychid mites. Experimental and Applied Acarology, 5: 151-162. Available from: https://doi.org/10.1007/BF02053824.
Krebs, R. A. and Loeschcke, V. 1994. Effects of exposure to short-term heat stress on fitness components in Drosophila melanogaster. Journal of Evolutionary Biology, 7: 39-49. Available from: https://doi.org/10.1046/j.1420-9101.1994.7010039.x.
Levins, R. 1969. Thermal acclimation and heat resistance in Drosophila species. American Society, 103: 483-499. Available from: https://doi.org/10.1086/282616.
Liu, S. S., Chen, F. Z. and Zalucki, M. P. 2002. Development and survival of the Diamondback moth (Lepidoptera: Plutellidae) at constant and alternating temperatures. Environmental Entomology, 31(2): 221-231. Available from: https://doi.org/10.1603/0046-225X-31.2.221.
Ma, C. S. and Chen, R. L. 1993. Effect of temperature on the development and fecundity of Plutella xylostella. Journal of Jilin Agricultural University, 3: 44-49.
Mahroof, R., Zhu, K. Y. and Subramanyam, B. 2005. Changes in expression of heat shock proteins in Tribolium castaneum (Coleoptera: Tenebrionidae) in relation to developmental stage, exposure time, and temperature. Physiology, Biochemistry and Toxicology, 98(1): 100-107. Available from: https://doi.org/10.1603/0013-8746(2005)098[0100:CIEOHS]2.0.CO;2.
Maia, A. H. N., Luiz, A. J. B. and Campanhola, C. 2000. Statistical influence on associated fertility life table parameters using Jackknife technique, computational aspects. Journal of Ecological Entomology, 93: 511-518. Available from: https://doi.org/10.1603/0022-0493-93.2.511.
Margraf, N., Gotthard, K. and Rahier, M. 2003. The growth strategy of an alpine beetle: maximization or individual growth adjustments in relation to seasonal time horizons. Functional Ecology, 17: 605-610. Available from: https://doi.org/10.1046/j.1365-2435.2003.00775.x.
Meyer, J. S., Ingersoll, C. G., McDonald, L. L. and Boyece, M. S. 1986. Estimating uncertainly in population growth rates: Jackknife vs. Bootstrap techniques. Ecology, 67: 1156-116. Available from: https://doi.org/10.2307/1938671.
Mitchell, H. K. and Lipps, L. S. 1978. Heat shock and phenocopy induction in Drosophila. Cell, 15: 907-918. Available from: https://doi.org/10.1016/0092-8674(78)90275-1.
Mitchell, H. K., Moller, G., Petersen, N. S. and Lipps-Sarmiento, L. 1979. ‘Specific protection from phenocopy induction by heat shock’. Developmental Genetics, 1: 181-192. Available from: https://doi.org/10.1002/dvg.1020010206.
Mourier, H. and Poulsen, K. P. 2000. ‘Control of insects and mites in grain using a high temperature/short Time (HTST) technique’. Journal of Stored Products Research, 36: 309-318. Available from: https://doi.org/10.1016/S0022-474X(99)00054-5.
Musolin, D. L. 2007. ‘Insects in an ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change’. Global Change Biology, 13: 1565-1585. Available from: https://doi.org/10.1111/j.1365-2486.2007.01395.x.
Ohgushi, T. and Sawada, H. 1997. ‘A shift toward early reproduction in an introduced herbivorous ladybird’. Ecological Entomology, 22: 90-96. Available from: https://doi.org/10.1046/j.1365-2311.1997.00024.x.
Overgaard, J. and Sørensen, J. G. 2008. Rapid thermal adaptation during field temperature variations in Drosophila melanogaster. Cryobiology, 56: 159-162. Available from: https://doi.org/10.1016/j.cryobiol.2008.01.001.
Rinehart, J. P., Yocum, G. D. and Denlinger, D. L. 2000. Thermotolerance and rapid cold hardening ameliorate the negative effects of brief exposures to high or low temperatures on fecundity in the flesh fly, Sarcophaga crassipalpis. Physiological Entomology, 25: 330-336. Available from: https://doi.org/10.1111/j.1365-3032.2000.00201.x.
Roux, O., Gevrey, M., Arvanitakis, L., Gers, C., Bordat, D. and Legal, L. 2007. Tool for discrimination and genetic structure analysis of Plutella xylostella populations native to different geographical areas. Molecular Phylogenetic and Evolution, 43: 240-250. Available from: https://doi.org/10.1016/j.ympev.2006.09.017.
Salvucci, M. E., Stecher, D. S. and Henneberry, T. J. 2000. ‘Heat shock proteins in whiteflies, an Insect that accumulates sorbitol in response to heat stresses. Journal of thermal Biology, 25: 363-371. Available from: https://doi.org/10.1016/S0306-4565(99)00107-2.
Saxena, B. P., Sharma, P. R., Thappa, R. K. and Tikku, K. 1992. Temperature induced sterilization for control of three stored grain beetles. Journal of Stored Product Research, 28: 67-70. Available from: https://doi.org/10.1016/0022-474X(92)90031-K.
Scott, M., Berrigan, D. and Hoffmann, A. A. 1997. Costs and benefits of acclimation to elevated temperature in Trichogramma carverae. Entomologia Experimentallis et Applicata, 85: 211-219. Available from: https://doi.org/10.1046/j.1570-7458.1997.00251.x.
Shirai, Y. 2000. Temperature tolerance of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae) in tropical and temperate regions of Asia. Bulletin of Entomological Research, 90: 357-364. Available from: https://doi.org/10.1017/S0007485300000481.
Southwood, T. R. E. and Henderson, P. A. 2000. Ecological Methods.3th edition, Blackwell Science, Oxford, p. 575.
Talekar, N. S. and Shelton, A. M. 1993. Biology, ecology, and management of the diamondback moth. Annual Review of Entomology, 38: 275-301. Available from: https://doi.org/10.1146/annurev.en.38.010193.001423.
Tammaru, T. 1998. Determination of adult Size in a Folivorous Moth: constraints at instar level. Ecological Entomology, 23: 80-89. Available from: https://doi.org/10.1046/j.1365-2311.1998.00106.x.
Tammaru, T., Nylin, S., Ruohomaki, K. and Gotthard, K. 2004. ‘Compensatory responses in Lepidoptera larvae: A test of growth rate maximization’.Oikos Journal, 107: 352-362. Available from: https://doi.org/10.1111/j.0030-1299.2004.13363.x.
Velazquez, J. M., Sonoda, S., Bugaisky, G. and Lindquist, S. 1983. ‘Is the major Drosophila heat shock protein present in cells that have not been heat shocked?. Journal of Cell Biology, 96: 286-290. Available from: https://doi.org/10.1083/jcb.96.1.286.
Vollmer, J. H., Sarup, P., Kærsgaard, C. W., Dahlgaard, J. and Loeschcke, V. 2004. ‘Heat and cold-induced male sterility in Drosophila buzzatii: genetic variation among populations for the duration of sterility’. Heredity, 92: 257-262. Available from: https://doi.org/10.1038/sj.hdy.6800405.
Wolfe, G. R., Hendrix, D. L. and Salvucci, M. E. 1998. ‘A Thermo protective role for sorbitol in the silver leaf whitefly, Bemisia argentifolii’. Journal of Insect Physiology, 44: 597-603. Available from: https://doi.org/10.1016/S0022-1910(98)00035-3.
Xie, Q., Hou, B. and Zhand, R. 2008. Thermal responses of oriental fruit fly (Diptera: Tephritidae) late third instars: mortality, puparial morphology, and adult emergence. Journal of Economic Entomology, 101: 736-741. Available from: https://doi.org/10.1093/jee/101.3.736.
Zhao X., Fu, J. W., Wan, F. H., Guo, J. Y. and Wang, J. J. 2009. ‘Effects of brief high temperature exposure on reproductive characteristics of Agasicles hygrophila (Coleoptera: Chrysomelidae)’. Acta Entomologica Sinica, 52: 1110-1114.