Abdelrahman, M., Abdel-Motaal, F., El-Sayed, M., Jogaiah, S., Shigyo, M., Ito, S. and Tran, L.S. P. 2016. Dissection of Trichoderma longibrachiatum -induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite pro-filing. Plant Science, 246: 128–138.
Al-Snafi A. E., 2016. The medical Importance of Cicer arietinum - A review.IOSR Journal of Pharmacy, 6 (3): 29–40.
Ardestani, A. and Yazdanparast, R. 2007. Antioxidant and free radical scavenging po-tential of Achillea santolina extracts. Food Chemistry, 104 (1): 21–29.
Bae, S. J., Mohanta, T. K., Chung, J. Y., Ryu, M., Park, G., Shim, S. and Bae, H. 2016. Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biological Control, 92: 128–138.
Chua, L. S., Latiff, N. A., Lee, S. Y., Lee, C. T., Sarmidi, M. R. and Aziz, R. A. 2011. Flavonoids and phenolic acids from Labisia pumila (Kacip Fatimah). Food Chemistry, 127(3): 1186–1192.
Clérivet, A., Alami, I., Breton, F., Garcia, D. and Sanier, C. 1996. Les composés phéno-liques et la résistance des plantes aux agents pathogènes. Acta Botanica Gallica, 143(6): 531–538.
Dennis, L. and Webster. J. 1971. Antagonisme properties of species-groups of Tricho-derma. III. Hyphal interaction. Trans. Br. Mycol. Soc, 57: 363–369.
Dennis, L. and Webster. J. 1971. Antagonistic properties of species-groups of Tricho-derma I. production of non-volatile antibiotics. Trans. Br, mycol, Soc, 57 (I): 25–39.
Donnelly, D. M. X. and Sheridan, M. H. 1986. Anthraquinones from Trichoderma poly-sporum. Phytochemistry, 25 (10): 2303–2304.
Dubey, S C., Tripathi, A., Dureja, P. and Grover, A. 2011. Characterization of second-ary metabolites and enzymes produced by Trichoderma species and their efficacy against plant pathogenic fungi. Indian Journal of Agricultural Sciences, 81 (5): 455–61.
Dubey, S. C., Suresh, M., and Singh, B. 2007. Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biological Control, 40(1): 118–127.
El-Debaiky, S. A. 2017. Antagonistic studies and hyphal interactions of the new antag-onist Aspergillus piperis against some phytopathogenic fungi in vitro in comparison with Trichoderma harzianum. Microbial Pathogenesis, 113: 135–143.
El-Sharkawy, H. H. A., Rashad, Y. M. and Ibrahim, S. A. 2018. Biocontrol of stem rust disease of wheat using arbuscular mycorrhizal fungi and Trichoderma spp. Physiological and Molecular Plant Pathology, 103: 84–91.
Gajera, H. P., Savaliya, D. D., Patel, S. V. and Golakiya, B. A. 2015. Trichoderma viride induces pathogenesis related defense response against rot pathogen infection in groundnut (Arachis hypogaea L.). Infection, Genetics and Evolution, 34: 314–325. Gaur, Y. D. and Sen, A. N. (1979). Cross inoculation group specificity in Cicer-Rhizobium symbiosis. New Phytologist, 83(3): 745–754.
Gava, C. A. T. and Pinto, J. M. 2016. Biocontrol of melon wilt caused by Fusarium oxysporum Schlect f. sp. melonis using seed treatment with Trichoderma spp. and liquid compost. Biological Control, 97: 13–20.
Iida, A., Mihara, T., Fujita, T. and Takaishi, Y. 1999. Peptidic immunosuppressants from the fungus Trichoderma polysporum. Bioorganic and Medicinal Chemistry Letters, 9 (24): 3393–3396.
Jiménez-Díaz, R. M., Castillo, P., Jiménez-Gasco, M. del M., Landa, B. B. and Navas-Cortés, J. A. 2015. Fusarium wilt of chickpeas: Biology, ecology and management. Crop Protection, 73: 16–27.
Jin, P., Wang, S. Y., Gao, H., Chen, H., Zheng, Y. and Wang, C. Y. 2012. Effect of cultural system and essential oil treatment on antioxidant capacity in raspberries. Food Chemistry, 132 (1): 399–405.
Jukanti, A. K., Gaur, P. M., Gowda, C. L. L. and Chibbar, R. N. 2012. Nutritional qual-ity and health benefits of chickpea (Cicer arietinum L.): a review. British Journal of Nu-trition, 108 (1): 11–26.
Keswani, C., Mishra, S., Sarma, B. K., Singh, S. P. and Singh, H. B. 2013. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Applied Microbiology and Biotechnology, 98 (2): 533–544.
Kumar, Sanjeev., Thakur, M. and Rani, A. 2014. Trichoderma: Mass production, formu-lation, quality control, delivery and its scope in commercialization in India for the man-agement of plant diseases. Afr. J. Agric. Res, 9 (53): 3838–3852.
Li, R.-X., Cai, F., Pang, G., Shen, Q.-R., Li, R. and Chen, W. 2015. Solubilisation of Phosphate and Micronutrients by Trichoderma harzianum and Its Relationship with the Promotion of Tomato Plant Growth. PLOS ONE, 10 (6): e0130081.
Li, Y.-T., Hwang, S.-G., Huang, Y.-M. and Huang, C.-H. 2018. Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Protection, 110: 275–282.
Mohammad, A., Hadi, G. and Masoud, A. 2011. Evaluation of different combinations of Trichoderma species for controlling Fusarium rot of lentil. African Journal of Bio-technology, 10(14): 2653–2658.
Mona, S. A., Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Soliman, D. W. K., Wirth, S. and Egamberdieva, D. 2017. Increased resistance of drought by Trichoderma-harzianum fungal treatment correlates with increased secondary metabolites and proline content. Journal of Integrative Agriculture, 16 (8): 1751–1757.
Nene, Y. L. and Haware, M. P. 1980. Screening chickpea for resistance to wilt. Plant Disease, 64(4): 379.
New, A.P., Eckers, C., Haskins, N.J., Neville, W.A., Elson, S., Hueso-Rodrfguez, J.A. and Rivera-Sagredo, A. 1996. Analytical Structures of Polysporins A-D, Four New Pep-taibols Isolated from Trichoderma polysporum. Tetrahedron Letters, 37 (17): 3039–3042.
Otadoh, J. A., Okoth S. A., Ochanda, J. and Kahindi, J. P. 2011. Assessment of Tricho-derma isolates for virulence efficacy on Fusarium oxysporum f. sp. phaseoli. Tropical and Subtropical Agroecosystems, 13: 99–107.
Pascale, A., Vinale, F., Manganiello, G., Nigro, M., Lanzuise, S., Ruocco, M. and Lori-to, M. 2017. Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Protection, 92: 176–181.
Qualhato, T. F., Lopes, F. A. C., Steindorff, A. S., Brandão, R. S., Jesuino, R. S. A. and Ulhoa, C. J. 2013. Mycoparasitism studies of Trichoderma species against three phyto-pathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Bio-technology Letters, 35(9): 1461–1468.
Saravanakumar, K., Dou, K., Lu, Z., Wang, X., Li, Y. and Chen, J. 2018. Enhanced biocontrol activity of cellulase from Trichoderma harzianum against Fusarium gramine-arum through activation of defense-related genes in maize. Physiological and Molecular Plant Pathology, 103: 130–136.
Saravanakumar, K., Yu, C., Dou, K., Wang, M., Li, Y. and Chen, J. 2016. Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biological Control, 94: 37–46.
Sharma, M., Nagavardhini, A., Thudi, M., Ghosh, R., Pande, S. and Varshney, R. K. 2014. Development of DArT markers and assessment of diversity in Fusarium ox-ysporum f. sp. ciceris, wilt pathogen of chickpea (Cicer arietinum L.). BMC Genomics, 15(1): 454.
Sharma, V., Salwan, R. and Sharma, P. N. 2017. The comparative mechanistic aspects of Trichoderma and Probiotics: Scope for future research. Physiological and Molecular Plant Pathology, 100: 84–96.
Sunpapao, A., Chairin, T. and Ito, S. 2018. The biocontrol by Streptomyces and Tricho-derma of leaf spot disease caused by Curvularia oryzae in oil palm seedlings. Biological Control, 123: 36–42.
Toghueo, R. M. K., Eke, P., Zabalgogeazcoa, Í., de Aldana, B. R. V., Nana, L. W. and Boyom, F. F. 2016. Biocontrol and growth enhancement potential of two endophytic Trichoderma spp. from Terminalia catappa against the causative agent of Common Bean Root Rot (Fusarium solani). Biological Control, 96: 8–20.
Trapero-Casas, A. and Jiminez-Diaz, R. M. 1985. Fungal wilt and root rot diseases of chickpea in Southern Spain. Phytopathology, 57: 1146–1151.
Vinale, F., Ghisalberti, E. L., Sivasithamparam, K., Marra, R., Ritieni, A., Ferracane, R. and Lorito, M. 2009. Factors affecting the production of Trichoderma harzianum sec-ondary metabolites during the interaction with different plant pathogens.Letters in Ap-plied Microbiology. doi:10.1111/j.1472-765x.2009.02599.x.
Vinale, F., Nigro, M., Sivasithamparam, K., Flematti, G., Ghisalberti, E. L., Ruocco, M. and Lorito, M. 2013. Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiology Letters, n/a–n/a. doi:10.1111/1574-6968.12231.
Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Barbetti, M. J., Li, H., Woo S.L. and Lorito, M. 2008. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology, 72 (1-3): 80–86.
Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Ruocco, M, Woo, S. and Lorito, M., 2012. Trichoderma Secondary Metabolites that Affect Plant Metabolism. Natural Prod-uct Communications, 7 (11): 2012.
Viterbo, A., Wiest, A., Brotman, Y., Chet, I. and Kenerley, C. 2007. The 18mer peptai-bols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol, 8: 737–46.
You, J., Zhang, J., Wu, M., Yang, L., Chen, W. and Li, G. 2016. Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biological Control, 101: 31–38.
Zeilinger, S., Gruber, S., Bansal, R. and Mukherjee, P. K. 2016. Secondary metabolism in Trichoderma – Chemistry meets genomics. Fungal Biology Reviews, 30 (2): 74–90.
Zhang, F., Ge, H., Zhang, F., Guo, N., Wang, Y., Chen, L., Ji, X. and Li, C. 2016. Bio-control potential of Trichoderma harzianum isolates T-aloe against Sclerotinia scleroti-orum in soybean. Plant Physiology and Biochemistry, 100: 64–74.