Abraham, E. G., Nagaraju, J., and Datta, R. K. 1992. Biochemical studies of amylases in the silkworm, Bombyx mori L.: comparative analysis in diapausing and nondiapausing strains. Insect Biochemistry and Molecular Biology, 22: 867-873.
Azevedo, T. M., Terra, W. R. and Ferreira, C. 2003. Purification and characterization of three β-glycosidases from midgut of the sugar cane borer, Diathraea saccharalis. Insect Biochemistry and Molecular Biology, 33: 81-92.
Behmer, S. and GrebenoK, R. 1998. Impact of dietary sterols on life‐history traits of a caterpillar. Physiological Entomology, 23, 165_175.
Bernfeld, P. 1955. Amylase, a and b. Methods Enzymology, 1: 49-154.
Bown, D. P., Wilkinson, H. S. and Gatehouse, J. A. 1997. Differentially regulated inhibitor-sensitive and insensitive protease genes from the phytophagous insect pest, Helicoverpa armigera, are members of complex multigene families. Insect Biochemistry and Molecular Biology, 27: 625-638.
Chougule, N. P., Doyle, E., Fitches, E. and Gatehouse, J. A. 2008. Biochemical characterization of midgut digestive proteases from Mamestra brassicae (cabbage moth; Lepidoptera: Noctuidae) and effect of soybean Kunitz inhibitor (SKTI) in feeding assays. Journal of Insect Physiology, 54: 563-572.
Cohen, A. C. 1993. Organization of digestion and preliminary characterization of salivary trypsin-like enzymes in a predaceous heteropteran, Zelus renardii. Journal of Insect Physiology, 39: 823-829.
Eigenbrode, S. D., Castagnola, T., Roux, M. B. and Steljes, L. 1996. Mobility of three generalist predators is greater on cabbage with glossy leaf wax than on cabbage with a wax bloom. Entomologia Experimentalis et Applicata, 81: 335-343.
Erlanger, B. F., Kokowsky, N. and Cohen, W. 1961. The preparation and properties of two new chromogenic substrates of trypsin. Archives of Biochemistry and Biophysics, 95: 271-278.
Franco, O. L., Rigden, D. J., Melo, F. R., Bloch, C., Silva, C. P. and Grossi de Sá, M. F. 2000. Activity of wheat α‐amylase inhibitors towards bruchid α‐amylases and structural explanation of observed specificities. The FEBS Journal, 267: 2166-2173.
Frandsen, T. P. and Svensson, B. 1998. Plant α-glucosidases of the glycoside hydrolase family 31. Molecular properties, substrate specificity, reaction mechanism, and comparison with family members of different origin. Plant Molecular Biology, 37:1-13.
García, M., Farinós, G. P., Castañera, P. and Ortego, F. 2012. Digestion, growth and reproductive performance of the zoophytophagous rove beetle Philonthus quisquiliarius (Coleoptera: Staphylinidae) fed on animal and plant based diets. Journal of Insect Physiology, 58: 1334-1342.
Garcia-carreno, F. L., Dimes, L. E. and Haard, N. F. 1993. Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Analytical Biochemistry, 214: 65-69.
Kianpour, R., Fathipour, Y., Karimzadeh, J. and Hosseininaveh, V. 2014. Influence of different host plant cultivars on nutritional indices of Plutella xylostella (Lepidoptera: Plutellidae). Journal of Crop Protection, 3: 43-49.
Kotkar, H. M., Sarate, P. J., Tamhane, V. A., Gupta, V. S. and Giri, A. P. 2009. Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants. Journal of Insect Physiology, 663-670.
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), p.680.
Lazarević, J. M. and Perić-Mataruga, V. D. 2003. Nutritive stress effects on growth and digestive physiology of Lymantria dispar larvae. Jugoslovenska Medicinska Biohemija, 22: 53-59.
Li, Q., Eigenbrode, S. D., Stringam, G. R. and Thiagarajah, M. R. 2000. Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities. Journal of Chemical Ecology, 26: 2401-2419.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry,193: 265-275.
MacKintosh, C. 1993. In “Protein Phosphorylation: A Practical Approach” (D. G. Hardie eds). Oxford University Press, Oxford, pp 197-210
Marchioro, C. A. and Foerster, L. A. 2013. Effects of adult‐derived carbohydrates and amino acids on the reproduction of Plutella xylostella. Physiological Entomology, 38: 13-19.
Markwick, N. P., Laing, W. A., Christeller, J. T., Reid, S. J. and Ruth Newton, M. 1996. α-Amylase activities in larval midgut extracts from four species of Lepidoptera (Tortricidae and Gelechiidae): Response to pH and to inhibitors from wheat, Barley, Kidney bean, and Streptomyces. Journal of Economic Entomology, 89: 39-45.
Mehrabadi, M., Bandani, A. R., Mehrabadi, R. and Alizadeh, H. 2012. Inhibitory activity of proteinaceous α-amylase inhibitors from Triticale seeds against Eurygaster integriceps salivary α-amylases: Interaction of the inhibitors and the insect digestive enzymes. Pesticide Biochemistry and Physiology, 102: 220-228.
Mehrabadi, M., Bandani, A. R., Saadati, F. and Mahmudvand, M. 2011. α-Amylase activity of stored products insects and its inhibition by medicinal plant extracts. Journal of Agricultural Science and Technology, 13: 1173-1182.
Naseri, B., Fathipour, Y., Moharramipour, S., Hosseininaveh, V. and Gatehouse, A. M. 2010. Digestive proteolytic and amylolytic activities of Helicoverpa armigera in response to feeding on different soybean cultivars. Pest Management Science, 66: 1316-1323.
Sarauer, B. L., Gillott, C. and Hegedus, D. 2003. Characterization of an intestinal mucin from the peritrophic matrix of the diamondback moth, Plutella xylostella. Insect Molecular Biology, 12: 333-343.
Sivakumar, S., Mohan, M., Franco, O. L. and Thayumanavan, B. 2006. Inhibition of insect pest α-amylases by little and finger millet inhibitors. Pesticide Biochemistry and Physiology, 85: 155-160.
Soufbaf, M., Fathipour, Y., Karimzadeh, J. and Zalucki, M. P. 2010. Bottom-up effect of different host plants on Plutella xylostella (Lepidoptera: Plutellidae): a life-table study on canola. Journal of Economic Entomology, 103: 2019-2027.
Soufbaf, M., Fathipour, Y., Zalucki, M. P. and Hui, C. 2012. Importance of primary metabolites in canola in mediating interactions between a specialist leaf-feeding insect and its specialist solitary endoparasitoid. Arthropod-Plant Interactions, 6: 241-250.
Tabatabaei, P. R., Hosseininaveh, V., Goldansaz, S. H. and Talebi, K. 2011. Biochemical characterization of digestive proteases and carbohydrases of the carob moth, Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae). Journal of Asia-Pacific Entomology, 14: 187-194.
Talekar, N. S. and Shelton, A. M. 1993. Biology, ecology, and management of the diamondback moth. Annual Review of Entomology, 38: 275-301.
Terra, W. R. and Ferreira, C. 1994. Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 109, 1_62.
Valencia-Jiménez, A., Ávila, A. L. and Grossi-de-Sa, M. F. 2008. Digestive α-amylases from Tecia solanivora larvae (Lepidoptera: Gelechiidae): response to pH, temperature and plant amylase inhibitors. Bulletin of Entomological Research, 98: 575-579.
Vinokurov, K. S., Oppert, B. and Elpidina, E. N. 2005. An overlay technique for postelectrophoretic analysis of proteinase spectra in complex mixtures using p-nitroanilide substrates. Analytical Biochemistry, 337: 164-166.
Winterer, J. and Bergelson, J. 2001. Diamondback moth compensatory consumption of protease inhibitor‐transformed plants. Molecular Ecology, 10: 1069-1074.
Yang, L., Fang, Z., Dicke, M., van Loon, J. J. and Jongsma, M. A. 2009. The diamondback moth, Plutella xylostella, specifically inactivates Mustard Trypsin Inhibitor 2 (MTI2) to overcome host plant defence. Insect Biochem. Molecular Biology, 39: 55-61.