Antiviral activity of aqueous extract of alligator plant, Bryophyllum daigremontianum L., against RNA and DNA plant viruses

Volume 8, Issue 4
August 2019
Pages 465-478

Document Type : Original Research

Authors

1 Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid, Iran.

2 Department of Plant Protection, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.

Abstract
Here we showed that aqueous extract of alligator plant, Bryophyllum daigremontianum L., is able to inhibit systemic and local infection of Tobacco mosaic virus (TMV: family Virgaviridae) in broad bean, Vicia faba L., nettle-leaved goosefoot, Chenopodium murale L., and tobacco, Nicotiana tabacum var. Turkish, N. tabacum var. Xanthi and N. glutinosa L., hosts. Antiviral activity of the extract was retained for a period of 8 days on treated broad bean and tobacco leaves. This activity was negatively correlated with the extract concentration, and it was completely lost by washing the treated leaves of tobacco plants 2 h post application, and was ineffective when applied 24 h post inoculation. No inhibitory effect was found against agro-inoculated strain of Beet curly top virus (BCTV: family Geminiviridae) on sugarbeet, Beta vulgaris L., seedlings. To determine the antiviral agent, Bryophyllum bulk protein designated BBP was isolated from the extract. BBP exhibited RNase activity against total RNA of TMV-infected tobacco tissues and genomic RNA of TMV while it failed to degrade genomic DNA of BCTV. Additionally, BBP completely inhibited TMV on N. glutinosa leaves at concentration of 40 μg/ml. These results suggest that a ribonuclease is mainly responsible for antiviral activity of alligator plant extract. To our knowledge, this is the first report on inhibitory effect of alligator plant extract on a plant virus. This plant species can be considered as a promising source for antiviral proteins in order to develop plant-derived compounds for effective control of plant mosaic diseases caused by TMV.

Keywords

Subjects
Akinpelu, D. A. 2000. Antimicrobial activity of Bryophyllum pinnatum leaves. Fitoterapia, 71: 193-194.
Aoki, C., Hartati, S., Santi, M. R., Lydwina Firdaus, R., Hanafi, M., Kardono, L. B. S., Yohko, S., Pratiwi, S. and Hak, H. 2014. Isolation and identification of substances with anti-hepatitis C virus activities from Kalanchoe pinnata. International Journal of Pharmacy and Pharmaceutical Sciences, 6: 211–215.
Bateman, J. G. and Chant, S. R. 1979. A modification of the polyethylene glycol technique for the purification of small quantities of tobacco mosaic virus. Microbios, 25: 33-43.
Bezic, N., Dunkic, V. and Vuko, E. 2013. Antiphytoniral activity of essential oils of some Lamiaceae species and there most important compounds on CMV and TMV. In: Mendez-Vilas, A. (Ed.), Microbial Pathogens and Strategies for Combating Them, Science, Echnology and Education, Formatex Research Center, pp. 982-988.
Clark, M. F. and Adams, A. N. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology, 34: 475-483.
Cryer, M., Lane, K., Greer, M., Cates, R., Burt, S., Andrus, M., Zou, J., Rogers, P., Hansen, M. D., Burgado, J. and Satheshkumar, P. S. 2017. Isolation and identification of compounds from Kalanchoe pinnata having human alphaherpesvirus and vaccinia virus antiviral activity. Pharmaceutical Biology, 55: 1586-1591.
Dayan, F. E., Cantrell, C. L. and Duke, O. S. 2009. Natural products in crop protection. Bioorganic & Medicinal Chemistry, 17: 4022-4034.
Ebadzad Sahrai, Gh., Behjatnia, S. A. A. and Izadpanah, K. 2008. Infectivity of the cloned genome of Iranian isolate of Beet severe curly top virus in experimental hosts. Iranian Journal of Plant Pathology, 44: 176-183.
Eini, O., Ebadzad Sahraei, G. and Behjatnia, S. A. A. 2016. Molecular characterization and construction of an infectious clone of a pepper isolate of Beet curly top Iran virus. Molecular Biology Research Communications, 52: 101–113.
Fraenkel-Conrat, H., 1957. Degradation of tobacco mosaic virus with acetic acid. Virology, 4: 1-4.‏
Ghodoum Parizipour, M. H., Behjatnia, S. A. A. and Izadpanah, K. 2013. Effect of temperature on the infection of sugar beet plants by Beet severe curly top virus and on recovery of virus-infected plants. Iranian Journal of Plant Pathology, 43: 123-136.
Greer, M. R., Cates, R. G., Johnson, F. B., Lamnaouer, D. and Ohai, L. 2010. Activity of acetone and methanol extracts from thirty-one medicinal plant species against Herpes simplex virus types 1 and 2. Pharmaceutical Biology, 48: 1031–1037.
Haible, D., Kober, S. and Jeske, H., 2006. Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. Journal of Virological Methods, 135: 9–16.
Herrera, I., Ferrer-Paris, J. R., Hernández-Rosas, J. I. and Nassar, J. M. 2016. Impact of two invasive succulents on native-seedling recruitment in Neotropical arid environments. Journal of Arid Environments, 132: 15–25.
Huh, S. U. and Paek, K. H. 2013. Plant RNA binding proteins for control of RNA virus infection. Frontiers in Physiology, 4: 397.
Iftikhar, S., Shahid, A. A., Javed, S. H., Nasir, I. A., Tabassum, B. and Saleem Haider, M. 2013. Essential oils and latices as novel antiviral agent against Potato leaf roll virus and analysis of their phytochemical constituents responsible for antiviral activity. Journal of Agricultural Science, 5: 167-188.
Ilinskaya, O. N. and Shah Mahmud, R. 2014. Ribonucleases as antiviral agents. Molecular Biology, 48: 615-623.
Kuo, P. C., Kuo, T. H., Su, C. R., Liou, M. J., Wu and T. S. 2008. Cytotoxic principles and α-pyrone ringopening derivatives of bufadienolides from Kalanchoe hybrida. Tetrahedron, 64: 3392- 3396.
Kwon, S. B., Shin, J. E., Ahn, S. Y., Yoon, C. S. and Kim, B. S. 2011. Inhibitory effects of the extract from Quercus dentata gallnut against plant virus infection. Korean Journal of Organic Agriculture, 19: 271-274.
Lee, G., Shim, H. K., Kwon, M. H., Son, S. H., Kim, K. Y., Park, E. Y., Yang, J. K., Lee, T. K., Auh, C. K., Kim, D., Kim, Y. S. and Lee S. 2013. RNA virus accumulation is inhibited by ribonuclease activity of 3D8 scFv in transgenic Nicotiana tabacum. Plant Cell, Tissue and Organ Culture, 115: 189-197.
Liu, K. C. S., Yang, S. L., Roberts, M. F. and Phillipson, J. D. 1989. Eupafolin rhamnosides from Kalanchoe gracilis. Journal of Natural Products, 52: 970-974.
Milad, R., El-Ahmady, S. and Singab, A. N. 2014. Genus Kalanchoe (Crassulaceae): A Review of Its Ethnomedicinal, Botanical, Chemical and Pharmacological Properties. European Journal of Medicinal Plants, 4: 86-104.
Mourao, R. H. V., Santos, F. O., Franzotti, E. M., Moreno, M. P. N. and Antoniolli, A. R. 1999. Antiinflammatory activity and acute toxicity (LD50) of the juice of Kalanchoe brasiliensis comb. leaves picked before and during blooming. Phytotherapy Research, 13: 352-354.
NG, T. B. and Wang, H. 2001. Panaxagin, a new protein from Chinese ginseng possesses anti-fungal, anti-viral, translation-inhibiting and ribonuclease activities. Life Science, 68: 739-749.
Pushpa, R., Nishant, R., Navin, K. and Pankaj, G. 2013. Antiviral potential of medicinal plants: an overview. International Research Journal of Pharmacy, 4: 8-16.
Rasoulpour, R., Afsharifar, A., Izadpanah, K. and Aminlari, M. 2017. Purification and characterization of an antiviral protein from prickly pear (Opuntia ficus-indica (L.) Miller) cladode. Crop Protection, 93: 33-42.
Rasoulpour, R., Afsharifar, A. and Izadpanah, K. 2018. Antiviral activity of prickly pear (Opuntia ficus-indica (L.) Miller) extract: Opuntin B, a second antiviral protein. Crop Protection, 112: 1-9.
Rossi-Bergmann, B., Costa, S. S., Borges, M. B. S., Da Silva, S. A., Noleto, G. R., Souza, M. L. M. and Moraes, V. L. G. 1994. Immunosuppressive effect of the aqueous extract of Kalanchoe pinnata in mice. Phytotherapy Research, 8: 399-402.
Schrot, J., Weng, A. and Melzig, M. F. 2015. Ribosome-Inactivating and related proteins. Toxins, 7: 1556-1615.
Sharma, A., Bhot, M. and Chandra, N. 2014. Protein profiling of Bryophyllum pinnatum (Lam.) Kurz. leaf. International Journal of Pharmacy and Pharmaceutical Science, 6: 496-497.‏
Shirobokov, V.P., Evtushenko, A. I., Lapchik, V. F., Shirobokova, D. N. and Suptel, E. A. 1981. Antiviral activity of representatives of the family Crassulaceae. Antibiotiki, 26: 897-900.
Siddiqui, S., Faizi, S., Siddiqui, B. S. and Sultana, N. 1989. Triterpenoids and phenanthrenes from leaves of Bryophyllum pinnatum. Phytochemistry, 28: 2433-2438.
Supratman, U., Fujita, T., Akiyama, K. and Hayashi, H. 2001. Insecticidal compounds from Kalanchoe daigremontiana × tubiflora. Phytochemistry, 58: 311-314.
Vandenbussche, F., Desmyter, S., Ciani, M., Proost, P., Peumans, W. J. and Van Damme, E. J. M. 2004. Analysis of the in planta antiviral activity of elderberry ribosome-inactivating proteins. European Journal of Biochemistry, 271: 1508–1515.
Verma, H. N. and Baranwal, V. K. 2011. Potency of plant products in control of virus diseases of plants. In: Dubey, N. K. (Ed.), Natural Products in Plant Pest Management. CAB International, pp. 149-174.
Verma, H. N., Srivastava, S. and Varsha Kumar, D. 1996. Induction of systemic resistance in plant against viruses by a basic protein from Clerodendrum aculeatum leaves. Phytopathology, 86: 485-492.
Wächter, R. 2011. Klinische Wirksamkeit, Pharmakologie und Analytik von Bryophyllum pinnatum. (PhD Thesis), University of Basel, Basel, Switzerland.
Wang, H. X. and Ng, T. B. 2000. Quinqueginsin, a novel protein with anti-human immunodeficiency virus, antifungal, ribonuclease and cell-free translation-inhibitory activities from American ginseng roots. Biochemical and Biophysical Research Communications, 269: 203-208.‏
Wang, C. Y., Huang, S. C., Zhang, Y., Lai, Z. R., Kung, S. H., Chang, Y. S. and Lin, C. W. 2012. Antiviral ability of Kalanchoe gracilis leaf extract against enterovirus 71 and coxsackievirus A16. Evidence-Based Complementary and Alternative Medicine, 2012: 503165.
Wong, K. L., Wong, R. N. K., Zhang, L., Liu, W. K., NG, T. B., Shaw, P. C., Kwok, P. C. L., Lai, Y. M., Zhang, Z. J., Zhang, Y., Tong, Y., Cheung, H. P., Lu, J. and Wing Sze S. C. 2014. Bioactive proteins and peptides isolated from Chinese medicines with pharmaceutical potential. Chinese Medicine, 9: 19.