Resistance mechanisms of a field population of diamond back moth, Plutella xylostella (Lepidoptera: Plutellidae) to current organophosphate pesticides

Authors
1 Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
2 Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
Abstract
The toxicological and biochemical properties of four organophosphate (OP) insecticides, chlorpyrifos, diazinon, phosalone and dichlorvos, were examined in terms of the diamond back moth, Plutella xylostella (L.) susceptible (Gu-S) and resistant (Kar-R) to OPs. The Kar-R population had significantly high resistance to chlorpyriphos (69.3 fold), medium resistance to diazinon (14.49-fold) and phosalone (10.3-fold), and had less resistance to dichlorvos (5.17-fold) compared to Gu-S population. DEM and TPP reduced Chlopyrifos resistance of Kar-R population as an inhibitor of glutathione S-transferase (GST) and esterases (EST), respectively. Biochemical studies clarified that GST and EST kinetic parameters in the Kar-R population were significantly higher than parameters of Gu-S population. Moreover, this study examined the Kinetics of hydrolysis of acetylthiocholine iodide, butyrylthiocholine iodide as artificial substrates by AChE of resistant and susceptible population. IC50 of monocrotophos, neostigmine bromide and eserine were also determined on AChE of resistant and susceptible populations. Kinetic analysis and inhibition tests indicated that an alteration in AChE of Kar-R population has an effect on both kinetic and inhibition results. The results distinctly showed that multiple mechanisms such as GST, esterases and altered AChE created chlorpyrifos resistance in the Kar-R and insensitivity of AChE is a significant factor for resistance to conventional OP compounds.
Keywords

Subjects


Alizadeh, A., Talebi, K. H., Hosseininaveh, V. and Ghadamyari, M. 2014. Toxicological and biochemical characterizations of AChE in phosalone-susceptible and resistant populations of the common pistachio psyllid, Agonoscena pistaciae. Journal of Insect Science, 14: 11 p. Andrews, M. C., Callaghan, A., Field, L. M., Williamson, M. S. and Moores, G. D. 2004. Identification of mutations conferring insecticide-insensitive AChE in the cotton-melon aphid, Aphis gossypii. Insect Molecular Biology, 13: 555-561. Archer, T. 1994. Chlorpyrifos resistance in greenbugs (Homoptera: Aphididae): Cross- resistance and synergism. Journal of Economic Entomology, 87: 1437-1440. Baek, J. H., Kim, J. I., Lee, D. W., Chung, B. K. and Lee, S. H. 2005. Identification and characterization of ace1-type acetylcholinesterase likely associated with organophosphate resistance in Plutella xylostella. Pesticide Biochemistry and Physiology, 81: 164-175. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 7: 248-254. Chai, Y. X., Liu, G. Y. and Wang, J. J. 2007. Toxicological and biochemical characterizations of AChE in Liposcelis bostrychophila Badonnel (Psocoptera: Liposcelididae). Pesticide Biochemistry and Physiology, 88: 197-202. Cheng, E. Y., Chou, T. M. and Kao, C. H. 1983. Insecticide resistance study in Plutella xylostella (L.) IV. The activities of glutathione-S-transferase in the organophosphorus resistant strains. Journal of Agricultural Research, 32: 373-378. Cho, J. M., Kim, K. J., Kim, S. S., Park, H. R., Lim, C. K. and Hur, J. H. 2006. Characteristics of resistance to chlorpyrifos in diamonback moth (Plutella xylostella L.) collected from Chinese cabbage alpine farmland at Gangwon-do, Korea. Korean Journal of Pesticide Science, 10 (1): 50-55. Corbett, J. R. 1974. The Biochemical Mode of Action of Pesticides. Academic Press, NY. Curtis, C. and Pasteur, N. 2009. Organophosphate resistance in vector populations of the complex of Culex pipiens L. (Diptera: Culicidae). Bulletin of Entomological Research, 71 (1): 153-161. Ellman, D., Courtney, V., Andres, J. and Featherstone, R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7: 88-95. Finney, D. J. 1971. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve, 2nd ed. Cambridge University Press, London. Fournier, D., Mutero, A., Pralavorio, M. and Bride, J. M. 1993. Drosophila acetylcholinesterase: mechanisms of resistance to organophosphates. Chemico Biological Interactions, 87: 233-238. Gao, J. R. and Zhu, K. Y. 2002. Increased expression of an acetylcholinesterase gene may confer organophosphate resistance in the greenbug, Schizaphis graminum (Homoptera: Aphididae). Pesticide Biochemistry and Physiology, 73: 164-173. Gao, J. R., Kambhampati, S. and Zhu, K. Y. 2002. Molecular cloning and characterization of a greenbug (Schizaphis graminum) cDNA encoding acetylcholinesterase possibly evolved from a duplicate gene lineage, Insect Biochemistry and Molecular Biology, 32: 765-775. Guides, C., Nariko, R., Dover, B. and Kambhampati, S. 1996. Resistance to chlorpyrifos-methyl, pirimiphos-methyl, and malathion in brazilian and us populations of Rhyzopertha dominica (Coleopera: Bostrichidae). Journal of Economic Entomology, 89 (1): 27-32. Habig, W. H., Pabst, M. J. and Jakoby, W. B. 1974. Glutathion S-transferase, the first step in mercapturic acid formation. Journal of Biological Chemistry, 249: 7130-7139. He, M., Zhen-Xian, A., Jiang, Z., Long, Y. N., Zhang, Y. L. and He, P. 2015. Biochemistry and molecular characterisation of chlorpyrifos resistance in field strains of the white-backed planthopper Sogatella furcifera (Hemiptera: Delphacidae). Australian Journal of Entomology, 54: 376-384. Hsu, J. C., Wu, W. J., Haymer, D. S., Liao, H. Y. and Feng, H. T. 2008. Alterations of the acetylcholinesterase enzyme in the oriental fruit fly Bactrocera dorsalis are correlated with resistance to the organophosphate insecticide fenitrothion. Insect Biochemistry and Molecular Biology, 38: 146-154. Huang, S. J. and Han, Z. J. 2007. Mechanisms for multiple resistances in field populations of common cutworm, Spodoptera litura (Fabricius) in China. Pesticide Biochemistry and Physiology, 87: 14-22. Kodwo, D and Tanaka, T. 2005. Synergism and stability of acetamiprid resistance in a laboratory colony of Plutella xylostella. Pest Management Science, 61: 723-727. Kozaki, T., Brady, S. G. and Scott, J. G.2009. Frequencies and evolution of organophosphate insensitive acetylcholinesterase alleles in laboratory and field populations of the house fly, Musca domestica L. Pesticide Biochemistry and Physiology, 95: 6-11. Kozaki, T., Shono, T., Tomita, T. and Kono, Y. 2001. Fenitroxon insensitive acetylcholinesterase of the housefly, Musca domestica associated with point mutations. Insect Biochemistry and Molecular Biology, 31: 991-997. Lee, D. W., Choi, J. Y., Kim, W. T., Song, J. T., Chung, B. K., Boo, K. S. and Koh, Y. K. 2007. Mutations of acetylcholinesterase1 contribute to prothiofos-resistance in Plutella xylostella (L.). Molecular Cell Biology Research Communications, 353 (3): 591-597, 2007. LeOra Software. 2007. LeOra Software Company. Available from: . Liu, H., Xu, Q., Zhang, L. and Liu, N. 2005. Chlorpyrifos resistance in mosquito Culex quinquefasciatus. Journal of Medical Entomology, 42 (5): 815-825. Lori, A. and Peter, B. 2014. Identifying and Managing Critical Uses of Chlorpyrifos against Key Pests of Alfalfa, Almonds, Citrus and Cotton. University of California Agriculture and Natural Resources UC Statewide IPM Program Kearney Agricultural Research Center, 44 p. Menozzi, P., Shi, M. A., Lougarre, A., Tang, Z. H. and Fournier, D. 2004. Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations. BMC Evolutionary Biology, 4: 4. Milio, J., Koehler, P. and Patterson, R. 1987. Evaluation of three methods for detecting chlorpyrifos resistance in German cockroach (Orthoptera: Blattellidae) populations. Journal of Economic Entomology, 80 (1): 44-46. Moores, G. D., Devonshire, A. L. and Denholm, I. 1988. A microtitre assay for characterizing insensitive acetylcholinesterase genotypes of insecticide-resistant insects. Bulletin of Entomological Research, 78: 537-544. Mutero, A., Pralavorio, M., Bride, J. M. and Fournier, D.1994. Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase, Proceedings of The National Academy of Sciences. USA 91, 5922. Noppun, V., Miyata, T. and Saito, T. 1983. Susceptibility of four strains of the diamondback moth, Plutella xylostella (L.) against insecticide. Journal of Pesticide Toxicology, 8: 595-599. Noppun, V., Miyata, T. and Saito, T. 1987. Insensitivity of acetylcholinesterase in phenothoate resistant diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Applied Entomology and Zoology, 22: 116-118. Oliveira, A. C., Siqueira, H. A. A., Oliveira, J. V., Silva, J. E. and Michereff, M. 2011. Resistance of Brazilian diamondback moth populations to insecticides. Journal of Agricultural Science, 68: 154-159. Pasteur, N. and Sinègre, G. 1978. Chlorpyrifos (Dursban(R)) resistance in Culex pipiens L. from Southern France: Inheritance and linkage. Cellular and Molecular Life Sciences, 34 (6): 709-711. Pu, X., Yang, Y. H., Wu, S. W. and Wu, Y. Z. 2010. Characterisation of abamectin resistance in a field-evolved multiresistant population of Plutella xylostella. Pest Management Science, 66: 371-378. Raymond, M., Fournier, D., Bride, J. M., Cuany, A., Berge, J. B. and Magnin, M. 1986. Identification of resistance mechanisms in Culex pipiens (Diptera: Culcidae) from Southern France: insensitive acetylcholinesterase and detoxifying oxidases. Journal of Economic Entomology, 79: 1452-1458. Ren, X. X., Han, Z. J. and Wang, Y. C. 2002. Mechanisms of monocrotophos resistance in cotton bollworm, Helicoverpa armigera (Hübner). Archives of Insect Biochemistry and Physiology, 51: 103-110. Rust, M. and Reierson, D. 1991. Chlorpyrifos resistance in German cockroaches (Dictyoptera: Blattellidae) from restaurants. Journal of Economic Entomology. 84 (3): 736-740. Sarfraz, M., Dosdall, L. M. and Keddie, B. A. 2006. Diamondback moth-host plant interactions: Implications for Pest Management. Crop Protection, 25: 625-639. SAS Institute, 2004. SAS/ETS 9.1 User's Guide. SAS Institute, Cary, NC. Sayyed, A. H. and Wright, D. J. 2006. Genetics and evidence for an esterase-associated mechanism of resistance to indoxacarb in a field population of diamondback moth (Lepidoptera: Plutellidae). Pest Management Science, 62: 1045-1051. Sayyed, A. H., Shafqat, S., Noor-Ul-Ane, M. and Crickmore, N. 2008. Genetic, Biochemical, and Physiological Characterization of Spinosad Resistance in Plutella xylostella (Lepidoptera: Plutellidae), Journal of Economic Entomology, 101 (5): 1658-1666. Smissaert, H. R. 1964. Cholinesterase inhibition in spider mites susceptible and resistant to organosphosphate. Science. 143: 129-131. Stumpf, N. C. P., Zebitz, W., Kraus, W, Moores, G. D. and Nauen, R. 2001. Resistance to organophosphates and biochemicalgenotyping of acetylcholinesterases in Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology, 69: 131-142. Sudderuddin, K. I. and Kok, P. F. 1978. Insecticide resistance in Plutella xylostella collected from the Cameron highlands of Malaysia. FAO Plant Protection Bulletin, 26: 53-57. Sun, C. N., Chi, H. and feng, H. T. 1978. Diamondback moth resistance to diazinon and methomyl in Taiwan. Journal of Economic Entomology, 71 (3): 551-554. Talekar, N. S. and Shelton, A. M. 1993. Biology, ecology and management of the diamondback moth. Annual Review of Entomology, 38: 275-301. Van Asperen, K. A. 1962. Study of Housefly Esterases by Means of a Sensitive Colorimetric Method. Journal of Insect Physiology, 8: 401-416. Voss, G. and Matsumura, F. 1964. Resistance to Organophosphorus Compounds in the Two-Spotted Spider Mite: Two Different Mechanisms of Resistance. Nature, 202: 319-320. Walsh, S. B., Dolde, T. A., Moores, G. D., Kristensen, M., Lewis, T., Devonshire, A. L. and Williamson M. S. 2001. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochemical Journal, 359: 175-181. Yang, J., Mutkus, L. A., Sumner, D., Stevens, J. T., Eldridge, J. C., Strandhoy, J. W. and Aschner, M. 2001. Transendothelial permeability of chlorpyrifos in RBE4 monolayers is modulated by astrocyte-conditioned medium. Molecular Brain Research, 97: 43-50. Yu, S. J. 2006. Insensitivity of acetylcholinesterase in a field strain of the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pesticide Biochemistry and Physiology, 84: 135-142. Yu, S. J. and Nguyen, S. N. 1992. Detection and biochemical characterization of insecticide resistance in the Diamond back moth. Pesticide Biochemistry and Physiology, 44: 74-81. Zalucki, M. P. 2012. Estimating the economic cost of one of the world's major insect pests, Plutella xylostella (Lepidoptera: Plutellidae). Journal of Economic Entomology, 105: 1115-1129. Zamani, P., Sajedi, R. H., Ghadamyari, M and Memarizadeh, N. 2014. Resistance Mechanisms to Chlorpyrifos in Iranian Populations of the Two-spotted Spider Mite, Tetranychus urticae (Acari: Tetranychidae). Journal of Agricultural Science and Technology, 16: 277-289. Zhang, N. N., Liu, C. F., Yang, F., Dong, S. H. and Zhao, J. H. 2012. Resistance Mechanisms to Chlorpyrifos and F392W Mutation Frequencies in the Acetylcholine Esterase Ace1 Allele of Field Populations of the Tobacco Whitefly, Bemisia tabaci in China. Journal of Insect Science, 12 (41): 1-13. Zhang, Y., Xu, L., Guo, H., Lihua, J., Peng, W. and Fang, J. 2013. Overexpression of carboxylesterase-1 and mutation (F439H) of acetylcholinesterase-1 are associated with chlorpyrifos resistance in Laodelphax striatellus. Pesticide Biochemistry and Physiology, 106 (1): 8-13. Zhao, J. Z., Li, X. Y., Collins, H. L., Gusukuma-Minuto, L., Mau, R. F. L., Thompson, G. D. and Shelton A. M. 2002. Monitoring and characterization of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad. Journal of Economic Entomology, 95: 430-436. Zhou, L. J., Huang, J. G. and Xu, H. H. 2011. Monitoring resistance of field populations of diamondback moth Plutella xylostella L. (Lepidoptera: Yponomeutidae) to five insecticides in South China: A ten-year case study. Crop Protection, 30: 272-278. Zhu, K. Y. and Clark, J. M. 1994. Purification and characterization of acetylcholinesterase from the Colorado potato beetle, Leptinotarsa decemlineata (Say). Insect Biochemistry and Molecular Biology, 24: 453-461.