New reports on dixenic associations between the symbionts of entomopathogenic nematodes, Photorhabdus and Xenorhabdus, and non-symbiotic bacteria

Volume 6, Issue 4
December 2017
Pages 497-511

Authors

1 Plant Protection Department, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran.

2 School of Agriculture, Policy and Development, Centre for Agri-Environmental Research, University of Reading, Reading, UK.

Abstract
By conducting three different methods, we report on the isolation of five novel strains of non-symbiotic bacteria from crushed infective juveniles (IJs) of four species of entomopathogenic nematodes (EPN) including Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae, and Steinernema glaseri and five bacterial species from hemolymph of insect larvae infected with EPNs. Samples of hemolymph of infected Galleria mellonella L. larvae by EPNs and crushed surface sterilized IJs were bulk streaked onto both MacConkey and NBTA agar. To further ensure diagnoses, extracted DNA from IJs bulk was subjected to PCR by 16S-rRNA bacterial universal primers. Bacteria were identified using biochemical and phylogenetic analysis. Based on 16S-rRNA gene sequence, maximum parsimony, maximum likelihood and neighbour joining phylogenetic analyses were conducted, as well as comparisons of predicted RNA secondary structures. Four species of bacteria were identified including: Stenotrophomonas maltophilia strain IR11 from S. feltiae; S. pavanii strain IR20 from S. glaseri; Acinetobacter junii strain IR8 from S. carpocapsae; and Alcaligenes faecalis strains IR1 & IR15 from S. feltiae and H. bacteriophora respectively as non-symbiotic bacteria from IJs and five species probably originated from G. mellonella intestine including Citrobacter gillenii isolate S3, Enterobacter asburiae isolate S4, Klebsiella oxytoca isolate S5, Morganella morganii isolate S6 and Serratia marcescens isolate S6.

Keywords

Agazadeh, M., Mohammadi, D. and Eivazian Kary, N. 2010. Distribution of entomopathogenic nematodes of the families steinernematidae and heterorhabditidae (Nematoda: Rhabditida) in potato fields in north-west iran. Munis Entomology and Zoology, 5: 758-763.
Aguillera, M. M. 1993. Bacterial symbionts of steinernema scapterisci. Journal of Invertebrate Pathology, 62: 68-72.
Aguillera, M. M. and Smart, G. C. 1993. Development, reproduction, and pathogenicity of steinernema scapterisci in monoxenic culture with different species of bacteria. Journal of Invertebrate Pathology, 62: 289-294.
Akhurst, R. and Dunphy, G. B. 1993. Tripartite interactions between symbiotically associated entomopathogenic bacteria, nematodes, and their insect hosts In: Beckage, N., Thompson, S. and Federici, B. (Eds.), Parasites and pathogens of insects. vol. 2. N. Y: Academic Press, New York. pp. 1-23.
Akhurst, R. J. 1982. Antibiotic activity of xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families heterorhabditidae and steinernematidae. Journal of General Microbiology, 128: 3061-3065.
Allgayer, H., Babic, R., Gruetzner, K. U., Tarabichi, A., Schildberg, F. W. and Heiss, M. M. 2000. C-erbb-2 is of independent prognostic relevance in gastric cancer and is associated with the expression of tumor-associated protease systems. J Clin Oncol, 18: 2201-9.
Babic, I., Fischer-Le Saux, M., Giraud, E. and Boemare, N. 2000. Occurrence of natural dixenic associations between the symbiont photorhabdus luminescens and bacteria related to ochrobactrum spp. In tropical entomopathogenic heterorhabditis spp. (Nematoda, Rhabditida). Microbiology, 146 (Pt 3): 709-18.
Bedding, R. A. and Akhurst, R. J. 1975. A simple technique for the detection of insect parasitic rhabditid nematodes in soil. Nematologica, 21: 109-110.
Blaxter, M. L., Page, A. P., Rudin, W. and Maizels, R. M. 1992. Nematode surface coats: Actively evading immunity. Parasitol. Today Parasitology Today, 8: 243-247.
Boemare, N. E., Akhurst, R. J. and Mourant, R. G. 1993. DNA relatedness between Xenorhabdus spp. (enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. Nov. International Journal of Systematic Bacteriology, 43: 249-255.
Brodsky, L. I., Ivanov, V. V., Kalaydzidis, Y. L., Leontovich, A. M., Nikolaev, V. K., Feranchuk, S. I. and Drachev, V. A. 1995. Genebee-net: An internet-based server for analyzing biopolymers structure. Biochemistry, 60: 1221-1230.
Brodsky, L. I., Vasilyev, A. V., Kalaydzidis, Y. L., Osipov, Y. S., Tatuzov, A. R. L. and Feranchuk, S. I. 1992. Genebee: The program package for biopolymer structure analysis. Dimacs, 8: 127-139.
Chen, G., Zhang, Y., Li, J., Dunphy, G. B., Punja, Z. K. and Webster, J. M. 1996. Chitinase activity of Xenorhabdus and Photorhabdus species, bacterial associates of entomopathogenic nematodes. Journal of Invertebrate Pathology, 68: 101-8.
Cipollo, J. F., Awad, A. M., Costello, C. E. and Hirschberg, C. B. 2004. Srf-3, a mutant of Caenorhabditis elegans, resistant to bacterial infection and to biofilm binding, is deficient in glycoconjugates Journal of Biology and Chemistery, 279: 52893-52903.
Eivazian Kary, N. and Alizadeh, Z. 2016. Non-symbiotic association of Citrobacter freundii and Staphylococcus succinus with the entomopathogenic nematode Steinernema feltiae. Journal of Entomological Society of Iran, 36: 111-119.
Eivazian Kary, N., Golizadeh, A., Rafiee Dastjerdi, H., Mohammadi, D., Afghahi, S., Omrani, M., Morshedloo, M. R. and Shirzad, A. 2012. A laboratory study of susceptibility of Helicoverpa armigera (huber) to three species of entomopathogenic nematodes. Munis Entomology and Zoology, 7: 372-379.
Eivazian Kary, N., Niknam, G., Griffin, C. T., Mohammadi, S. A. and Moghaddam, M. 2009. A survey of entomopathogenic nematodes of the families Steinernematidae and Heterorhabditidae (Nematoda: Rhabditida) in the north-west Iran. Nematology, 11: 107-116.
Forst, S. and Clarke, D. 2002. Bacteria-nematode symbiosis In: Gaugler, R. (Ed.), Entomopathogenic Nematology. CAB International.
Gouge, D. H. and Snyder, J. L. 2006. Temporal association of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) and bacteria. Journal of Invertebrate Pathology, 91: 147-57.
Hoflich, J., Berninsone, P., Gobel, C., Gravato-Nobre, M. J., Libby, B. J., Darby, C., Politz, S. M., Hodgkin, J., Hirschberg, C. B. and Baumeister, R. 2004. Loss of srf-3-encoded nucleotide sugar transporter activity in Caenorhabditis elegans alters surface antigenicity and prevents bacterial adherence. Journal of Biology and Chemistery, 279: 30440-30448.
Hominick, W. M., Briscoe, B. R., del Pino, F. G., Heng, J., Hunt, D. J., Kozodoy, E., Mracek, Z., Nguyen, K. B., Reid, A. P., Spiridonov, S., Stock, P., Sturhan, D., Waturu, C. and Yoshida, M. 1997. Biosystematics of entomopathogenic nematodes: Current status, protocols and definitions. Journal of Helminthology, 71: 271-98.
Huang, X., Liu, J., Ding, J., He, Q., Xiong, R. and Zhang, K. 2009. The investigation of nematocidal activity in Stenotrophomonas maltophilia g2 and characterization of a novel virulence serine protease. Canadian Journal of Microbiology, 55: 934-42.
Isaacson, P. J. and Webster, J. M. 2002. Antimicrobial activity of xenorhabdus sp. Rio (enterobacteriaceae), symbiont of the entomopathogenic nematode, Steinernema riobrave (Rhabditida: Steinernematidae). Journal of Invertebrate Pathology, 79: 146-53.
Joyce, S. A., Burnell, A. M. and Powers, T. O. 1994. Characterization of Heterorhabditis isolates by PCR amplification of segments of mtdna and rDNA genes. Journal of Nematology, 26: 260-70.
Kaya, H. K. and Gaugler, R. 1993. Entomopathogenic nematodes. Annual Review of Entomology, 38: 181-206.
Krieg, N. R. and Holt, J. G. 1984. Bergeys Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore, USA.
Lysenko, O. and Weiser, J. 1974. Bacteria associated with the nematode neoaplectana carpocapsae and the pathogenicity of this complex for Galleria mellonella larvae. Journal of Invertebrate Pathology, 24: 332-336.
Maxwell, P. W., Chen, G., Webster, J. M. and Dunphy, G. B. 1994. Stability and activities of antibiotics produced during infection of the insect Galleria mellonella by two isolates of Xenorhabdus nematophilus. Applied Environmental Microbiology, 60: 715-21.
Page, A. P., Hamilton, A. J. and Maizels, R. M. 1992. Toxocara canis: Monoclonal antibodies to carbohydrate epitopes of secreted (tes) antigens localize to different secretion-related structures in infective larvae. Experimental Parasitology, 75: 56-71.
Park, H. W., Kim, Y. O., Ha, J. S., Youn, S. H., Kim, H. H., Bilgrami, A. L. and Shin, C. S. 2011. Effects of associated bacteria on the pathogenicity and reproduction of the insect-parasitic nematode Rhabditis blumi (Nematoda: Rhabditida). Canadian Journal of Microbiology, 57: 750-758.
Pidiyar, V. J., Jangid, K., Patole, M. S. and Shouche, Y. S. 2004. Studies on cultured and uncultured microbiota of wild Culex quinquefasciatus mosquito midgut based on 16s ribosomal RNA gene analysis. American Journal of Tropical Medicine and Hygiene, 70: 597-603.
Poinar, G. O. J. 1976. Description and biology of a new insect parasitic rhabditoid, Heterorhabditis bacteriophora n. Gen., n. Sp. (Rhabditida: Heterorhabditidae n. Fam.). Nematologica, 21: 463-470.
Politz, S. M. and Philipp, M. 1992. Caenorhabditis elegans as a model for parasitic nematodes: A focus on the cuticle. Parasitology Today, 8: 6-12.
Quiroz-Castaneda, R. E., Mendoza-Mejia, A., Obregon-Barboza, V., Martinez-Ocampo, F., Hernandez-Mendoza, A., Martinez-Garduno, F., Guillen-Solis, G., Sanchez-Rodriguez, F., Pena-Chora, G., Ortiz-Hernandez, L., Gaytan-Colin, P. and Dantan-Gonzalez, E. 2015. Identification of a new Alcaligenes faecalis strain mor02 and assessment of its toxicity and pathogenicity to insects. Biomed Research International, 2015: 570243.
Rafiei, S. and Khodakaramian, G. H. 2015. Screening and characterization of plant growth-promoting bacteria in the rhizo- and endosphere of the cucumber. Journal of Pure and Applied Microbiology, 9: 367-374.
Razia, M., Karthik Raja, R., Padmanaban, K., Chellapandi, P. and Sivaramakrishnan, S. 2011. 16s rDNA-based phylogeny of non-symbiotic bacteria of entomopathogenic nematodes from infected insect cadavers. Genomics Proteomics Bioinformatics, 9: 104-112.
Sharifi, R. and Eivazian Kary, N. 2016. Temporal symbiotic relationships of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) with Providencia rettgeri and Pseudochrobactrum sp. Munis Entomology and Zoology, 11: 52-62.
Singh, S., Reese, J. M., Casanova-Torres, A. M., Goodrich-Blair, H. and Forst, S. 2014. Microbial population dynamics in the hemolymph of manduca sexta infected with Xenorhabdus nematophila and the entomopathogenic nematode Steinernema carpocapsae. Applied Environmental Microbiology, 80: 4277-4285.
Somvanshi, V. S., Lang, E., Straubler, B., Sproer, C., Schumann, P., Ganguly, S., Saxena, A. K. and Stackebrandt, E. 2006. Providencia vermicola sp. Nov., isolated from infective juveniles of the entomopathogenic nematode steinernema thermophilum. International Journal of Systematic and Evolutionary Microbiology, 56: 629-633.
Stock, S. P. and Kaya, H. K. 1996. A multivariate analysis of morphometric characters of Heterorhabditis species (Nemata: Heterorhabditidae) and the role of morphometrics in the taxonomy of species of the genus. Journal of Parasitology, 82: 806-813.
Thomas, G. M. and Poinar, G. O. J. 1979. Xenorhabdus new-genus of entomo pathogenic nematophilic bacteria of the family enterobacteriaceae. International Journal of Systematic Bacteriology 29: 352-360.
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The clustal_x windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25: 4876-4882.
Travassos, L. 1927. Sorbe o genera Oxysomatium. Boletim Biologico, 5: 20-21.
White, G. F. 1929. A method for obtaining infective nematode larvae from cultures. Science, 66: 302-303.
Yadav, S., Shokal, U., Forst, S. and Eleftherianos, I. 2015. An improved method for generating axenic entomopathogenic nematodes. BMC Research Notes, 8: 461.