Plant growth promotion and bacterial canker control of Lycopersicon esculentum L. cv. Campbell 33 by biocontrol agents

10.48311/jcp.2017.1351
Volume 6, Issue 2
June 2017
Pages 235-244

Authors

1 Laboratory of Plant Bacteriology and Biological Control, National Institute of Agronomic Research, Meknes, Morocco.

2 Laboratory of Microbial Biotechnology, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez, Morocco.

Abstract
Endophytic and epiphytic bacteria have been reported as agents of bio-control of diseases and plant growth promotors. Here, in vitro and greenhouse experiments were conducted to evaluate the action of two microbial strains; Aureobasidium pullulans and Pantoea agglomerans, on biocontrol of bacterial canker and growth promotion of tomato (Lycopersicon esculentum cv. Campbell 33). Two frequencies of treatment were used to assess their potential effect (15 and 30 days between two subsequent treatments). The two strains were able to inhibit, in vitro, the growth of Clavibacter michiganensis subsp. michiganensis the causative agent of tomato canker. Also, their antagonistic effects were confirmed in greenhouse conditions. Indeed, bacterial canker incidence in tomato plants treated with A. pullulans and P. agglomerans separately or in mixture was significantly less severe (16%) compared to the positive control (83%). The treatment frequency (intervals of 15 or 30 days) and the choice of strains to inoculate (separated or combined strains) appear to be essential for obtaining significant results. Consequently, both A. pullulans and P. agglomerans strains highly reduced incidence of bacterial canker particularly when tomato plants were treated at a frequency of fifteen days

Keywords

Achbani, E. H., Mounir, R., Jaafari, S., Douira, A., Benbouazza, A. and Jijakli, M. H. 2005. Selection of antagonists of postharvest apple parasites: Penicillium expansum and Botrytis cinerea. Communications in Agricultural and Applied Biological Sciences, 70: 143-149.
Amkraz, N. 2013. Utilisation des Pseudomonas spp. fluorescents et des plantes aromatiques et médicinales contre Clavibacter michiganensis subsp. michiganensis, agent du chancre bactérien de la tomate. Ph.D. Dissertation, Université Ibn Zohr, Morocco. 81 PP.
Amkraz, N., Boudyach, E. H., Boubaker, H., Bouizgarne, B. and Aoumar, A. A. B. 2010. Screening for fluorescent pseudomonades, isolated from the rhizosphere of tomato, for antagonistic activity toward Clavibacter michiganensis subsp. michiganensis. World Journal of Microbiology and Biotechnology, 26 (6): 1059-1065.
Atkinson, M. M., Huang, J. S. and Knopp, J. A. 1985. The Hypersensitive Reaction of Tobacco to Pseudomonas syringae pv. pisi. Plant Physiology, 79, 843-847.doi:10.1104/ pp.79.3.843.
Bencheqroun, S. K., Bajji, M., Massart, S., Bentata, F., Labhilili, M., Achbani, H., El Jaafari, S. and Jijakli, H. 2006. Biocontrol of blue mold on apple fruits by Aureobasidium pullulans (strain Ach 1-1): in vitro and in situ evidence for the possible involvement of competition for nutrients. Communications in Agricultural and Applied Biological Sciences, 71 (3 Pt B), 1151-1157.
Bhattacharyya, P. N. and Jha, D. K. 2012. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28: 1327-1350. doi:10.1007/s11274-011-0979-9.
Boer, M. de, Sluis, I. van der, Loon, L. C. van, Bakker, P., de Boer, M., van der Sluis, I., van Loon, L.C., Duffy, B., Rosenberger, U. and Defago, G. 1998. In vitro compatibility between fluorescent Pseudomonas spp. strains can increase affectivity of Fusarium wilt control by combinations of these strains. Bulletin of OILB SROP 21, 257-261.
Boudyach, E. H, Fatmi, M, Akhayat, O, Benizri, E. and Aoumar, A. A. B. 2001: Selection of Antagonistic Bacteria of Clavibacter michiganensis subsp. michiganensis and Evaluation of Their Efficiency Against Bacterial Canker of Tomato, Biocontrol Science and Technology, 11: 1, 141-149.
Boudyach, E. H., Fatmi, M., Boubaker, H., Aoumar, A. A. B. and Akhayat, O. 2004. Effectiveness of fluorescent pseudomonads strains HF 22 and HF 142 to control bacterial canker of tomato. Journal of Food Agriculture and Environment, 2 (3): 115-120.
Davis, M. J., Gillaspie Jr, A. G., Vidaver, A. K. and Harris, R. W. 1984. Clavibacter: a new genus containing some phytopathogenic coryneform bacteria, including Clavibacter xyli subsp. xyli sp. nov., subsp. nov. and Clavibacter xyli subsp. cynodontis subsp. nov., pathogens that cause ratoon stunting disease of sugarcane and bermudagrass stunting disease. International Journal of Systematic and Evolutionary Microbiology, 34 (2): 107-117. doi:10.1099/00207713-34-2-107.
Faheem, M., Raza, W., Zhong, W., Nan, Z., Shen, Q. and Xu, Y. 2015. Evaluation of the biocontrol potential of Streptomyces goshikiensis YCXU against Fusarium oxysporum f. sp. niveum. Biol. Control, 81: 101-110. doi:10.1016/j.biocontrol.2014.11.012.
Faquihi, H., Mhand, R. A., Ennaji, M., Benbouaza, A. and Achbani, E. 2015. Aureobasidium pullulans (De Bary) G. Arnaud, a Biological Control against Soft Rot Disease in Potato Caused by Pectobacterium carotovorum. International Journal of Science and Research, 3: 1779-1786.
Fatmi, M., Schaad, N. C. W. and Bolkan, H. C. A. 1991. Seed treatments for eradicating Clavibacter michiganensis subsp. michiganensis from naturally infected tomato seeds. Plant Disease, 75 (4): 383-385.
Hausbeck, M.K., Bell, J., Medina-Mora, C., Podolsky, R. and Fulbright, D. W. 2000. Effect of bactericides on population sizes and spread of Clavibacter michiganensis subsp. michiganensis on tomatoes in the greenhouse and on disease development and crop yield in the field. Phytopathology, 90: 38-44. doi:10.1094/PHYTO.2000.90.1.38.
Jäderlund, L., Arthurson, V., Granhall, U. and Jansson, J. K. 2008. Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: As revealed by different combinations. FEMS Microbiology Letters, 287: 174-180.doi:10. 1111/j.1574-6968.2008.01318.x.
Kumar, R. K. 2007. Evaluation of plant growth promoting rhizobacteria strains against tmv on tomato (Doctoral dissertation, UAS, Dharwad).
Ramsay, A. J. 1974. Improved extraction of chlorophyll a and b from algae using dimethyl sulfoxide. Cawthron Institute P.O. Box 175 Nelson, New Zealand.
Sadik, S., Mazouz, H., Benbouazza, A. B. A. and Achbani, E. H. 2015. Biological Control of Bacterial Onion Diseases using a Bacterium, Pantoea agglomerans 2066-7. International Journal of Science and Research, 4: 103-111.
Satrani, B., El Ouadihi, N., Guedira, A., Frey-Klett, P., Arahou, M. and Garbaye, J. 2009. Effet de la bactérisation des graines sur la croissance des plants de Cedrus atlantica Manetti. Biotechnologie, Agronomie, Société et Environnement, 13 (3): 367-372.
Schultz, C. 2001. Effect of (vesicular-) arbuscular mycorrhiza on survival and post vitro development of micropropagated oil palm (Elaeis guineensis Jacq.). Elektronische Dissertatioonen der Georg-Aug-Universität Göttingen. http://webdoc. sub. gwdg.de/diss/ 2002/schultz/index. html, 5-14.
UNESCO. 1966. Determination of photosynthetic pigments in sea-water. Monographs on Oceanographic Methodology, 1: 1-69. doi:10.1007/s13398-014-0173-7.2
Utkhede, R. and Koch, C. 2004. Biological treatments to control bacterial canker of greenhouse tomatoes. Biocontrol, 49 (3): 305-313.
Xu, G. W. and Gross, D. C. 1986. Selection of fuorescent pseudomonas antogonistic to Erwinia carotovora and supressive of potato seed piece decay. Phytopathology, 76: 414-222.
Yogev, A., Raviv, M., Kritzman, G., Hadar, Y., Cohen, R., Kirshner, B. and Katan, J. 2009. Suppression of bacterial canker of tomato by composts. Crop Protection, 28: 97-103. doi:10.1016/j.cropro.2008.09.003