Aghaali, N., Ghadamyari, M. and Ajamhasani, M. 2012. Biochemical characterization of glucosidases and galactosidases from rosaceae branch borer, Osphranteria coerulescens Redt. (Col.: Cerambycidae). Romanian Journal of Biochemistry, 49 (2): 125-137.
Asadi, A., Ghadamyari, M., Sajedi, H. R., Jalali, J. and Tabari, M. 2010. Biochemical characterization of midgut, salivary glands and haemolymph α-amylases of Naranga aenescens. Bulletin of Insectology, 63 (2): 175-181.
Baldwin, I. T. 2001. An ecologically motivated analysis of plant-herbivore interactions in native tobacco. Plant Physiology, 127: 1449-1458.
Baniameri V. and Cheraghian A. 2012. The first report and control strategies of Tuta absoluta in Iran. Bulletin OEPP/EPPO Bulletin, 42 (2): 322-324.
Bernfeld, P. 1955. Amylase, α and β. In: Colowick, S.P., Kaplan, N.O. (Eds.), Methods in Enzymology. Academic Press, New York, pp.149-158.
Bigham, M., Hosseininaveh V. and Darvishzadeh A. 2013. Activity of digestive proteinases and carbohydrases in the alimentary tract of the fig leaf roller, Choreutis nemorana Hübner (Lepidoptera: Choreutidae). Archives Phytopathology and Plant Protection, 46: 2035-2042.
Birkett, M. A., Campbell, C. A. M., Chamberlain, K., Guerrieri, E., Hick, A. J., Martin, J. L., Matthes, M., Napier, J. A., Pettersson, J., Pickett, J. A., Poppy, G. M., Pow, E. M., Pye, B. J., Smart, L. E., Wadhams, G. H., Wadhams, L. J. and Woodcock, C. M. 2000. New roles for cis-jasmone as an insect semiochemical and in plant defense. Proceedings of the National Academy of Sciences of the United States of America, 97: 9329-9334.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
Chapman, R. F. 1998. The Insects: Structure and Function. Cambridge University Press, Cambridge, 788 pages.
Darvishzadeh, A., Hosseininaveh, V. and Salimian Rizi, S. 2014. Enzymatic activity of α-amylase in alimentary tract Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae): Characterization and Compartmentalization. Arthropods, 3 (3): 138-146.
Davis, B. J. 1960. Disc electrophoresis II. Method and application to human serum protein. Annals of the New York Academy of Sciences, 121: 404-427.
Dow, J. A. T. 1986. Insect midgut function. Advances in Insect Physiology, 19: 187-328.
Esmaeily, M. and Bandani, A. R. 2015. Interaction between larval α-amylase of the tomato leaf miner, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) and proteinaceous extracts from plant seeds. Journal of Plant Protection Research, 55 (3): 278-286.
Ferreira, C., Torres, B. B. and Terra, W. R 1998. Substrate specificities of midgut β- glycosidases from insects of different orders. Comparative Biochemistry and Physiology, 119B: 219-225.
Franzl, S., Ackermann, I. and Nahrstedt, A. 1989. Purification and characterization of a β-glucosidase (linamarase) from the haemolymph of Zygaena trifolii Esper 1783 (Insecta, Lepidoptera). Experientia, 45: 712-718.
Fordyce, J. A. and Agrawal, A. A. 2001. The role of plant trichomes and caterpillar group size on growth and defense of the pipe vine swallowtail Battus philenor. Journal of Animal Ecology, 70: 997-1005.
Ghadamyari, M., Hosseininaveh, V. and Sharifi, M. 2010. Partial biochemical characterization of α- and β-glucosidases of lesser mulberry pyralid, Glyphodes pyloalis Walker (Lep.: Pyralidae). Comptes Rendus Biologies, 333: 197-204.
Gholamzadeh Chitgar, M., Ghadamyari, M., Sharifi, M. and Hassan Sajedi, R. 2014. Partial characterization digestive carbohydrases midgut Figure tree skeletonizer moth Choreutis nemorana (Lep.: Choreutidae). Trakia Journal of Sciences, 12 (1): 27-37.
Girard, C., Le Métayer, M., Bonadé-Bottino, M., Pham-Delègue, M. H. and Jouanin, L. 1998. High level of resistance to proteinase inhibitors may be conferred by proteolytic cleavage in beetle larvae. Insect Biochemistry and Molecular Biology, 28: 229-237.
Hori, K. 1971. Studies on the feeding habits of Lygus disponsi Linnavuori (Hemiptera: Miridae) and the injury to its host plants. I. Histological observations of the injury. Applied Entomology and Zoology, 6: 84-90.
Jongsma, M. A. and Bolter, C.1997. The adaptation of insect to plant protease inhibitors. Journal of Insect Physiology, 43: 885-896.
Kaur R., Kaur N. and Gupta A. K. 2014. Structural features, substrate specificity, kinetic properties of insect α-amylase and specificity of plant α-amylase inhibitors. Biochemistry and Physiology, 116: 83-93.
Low, N. H., Vong, K. V. and Spornes, P. 1986. A new enzyme, β-glucosidase in honey. Journal of Apicultural Research, 25: 178-181.
Marana, S. R., Terra, W. R. and Ferreira, C. 2000. Purification and properties of a ß-glycosidase purified from midgut cells of Spodoptera frugiperda (Lepidoptera) larvae. Insect Biochemistry and Molecular Biology, 30: 1139-1146.
Matsumura, S. 1934. Genetical and physiological studies on amylase activity in the digestive juice and haemolymph of the silkworm, Bombyx mori. L. Bulletin Nagano-Ken Sericulture Experiment Station, 28: 1-24.
Mello, M. O. and Silva-Filho, M. C. 2002. Plant-insect interactions: An evolutionary arms race between two distinct defense mechanisms. Brazilian Journal of Plant Physiology, 14: 71-81.
Mendiola-Olaya, E., Valencia-Jiménez, A., Valdes-Rodriguez, S., Delano-Frier, J. and Blanco-Labra, A. 2000. Digestive amylase from the larger grain borer, Prostephanus truncatus Horn. Comparative Biochemistry and Physiology, 126B: 425.433.
Nemati Kalkhoran, M., Naseri, B., Rahimi Namin, F. and Kouhi, D. 2013. Life table parameters and digestive enzymes activity of Helicoverpa armigera (Lep.: Noctuidae) on different tomato cultivars. Journal of Entomological Society of Iran, 33 (2): 45-58.
Ozgur, E., Yucel, M. and Oktem, H. A. 2009. Identification and characterization of hydrolytic enzymes from the midgut of the cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Turkish Journal of Agriculture and Forestry 33: 285-294.
Paulillo, L. C. M. S., Lopes, A. R., Cristofoletti, P. T., Parra, J. R. P., Terra, W. R. and Silva-Filho, M. C. 2000. Changes in midgut endopeptidase activity of Spodoptera frugiperda (Lepidoptera: Noctuidae) are responsible for adaptation to soybean proteinase inhibitors. Journal of Economic Entomology, 93: 892-896.
Ramzi, S. and Hosseininaveh, V. 2010. Biochemical characterization of digestive α-amylase, α-glucosidase and β-glucosidase in pistachio green stink bug, Brachynema germari Kolenati (Hemiptera: Pentatomidae). Journal of Asia-Pacific Entomology, 13: 215-219.
Riseh, N. S., Ghadamyari, M. and Motamediniya, B. 2012. Biochemical characterization of α & β-glucosidases and α- & β-galactosidases from red palm weevil, Rhynchophorus ferrugineus Olivieri (Col.: Curculionide). Plant Protection Science, 48: 85-93.
Roditakis E., Skarmoutsou C. and Staurakaki M. 2013. Toxicity of insecticides to populations of tomato borer Tuta absoluta (Meyrick) from Greece. Pest Management Science, 69: 834-840.
SAS Institute. 1997. SAS/STAT user’s guide for personal computers. Cary, NC: SAS Institute.
Shade, R. E., Schroeder, H. E., Pueyo, J. J., Tabe, L. M., Murdock, L. L., Higgins, T. J. V., and Chrispeels, M. J. 1994. Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Bio/Technology 12: 793-796.
Sharifi, M., Ghadamyari, M., Moghadam, M. M. and Saiidi, F. 2011. Biochemical characterization of digestive carbohydrases from Xanthogaleruca luteola and inhibition of its α-amylase by inhibitors extracted from the common bean. Archives of Biological Science, 63: 705-716.
Sharifloo, A. Zibaee, A., Jalal Sendi, J. and Talebi Jahromi, Kh. 2016. Characterization of a Digestive α-Amylase in the Midgut of Pieris brassicae L. (Lepidoptera: Pieridae) Frontiers in Physiology, Frontiers in Physiology, 7: 96.
Silva G. A., Picanço M. C. and Bacci L., Crespo A. L. B., Rosado J. F. 2011. Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Management Science, 67: 913-920.
Sivakumar, S., Mohan, M., Franco, O. L. and Thayumanavan, B. 2006. Inhibition of insect pest α-amylases by little and finger millet inhibitors. Biochemistry and Physiology, 85: 155-160.
Slansky, F. 1982. Insect nutrition: an adaptationists perspective. The Florida Entomologist, 65: 45-71.
Swart, C. C., Deaton, L. E. and Felgenhauer, B. E. 2006. The salivary gland and salivary enzyme of the giant water bugs (Heteroptera; Belostomatidae). Comparative Biochemistry and Physiology, 145: 114-122.
Tanabe, S. and Kusano, T. 1984. Changes of the haemolymph amylase activity during development and its properties in the cabbage armyworm, Mamestra brassicae L. Kontyu, 542 (4): 472-481.
Terra, W. R. and Ferreira, C. 2012. Biochemistry and molecular biology of digestion, In: Gilbert, L. I. (Ed.), Insect Molecular Biology and Biochemistry, Elsevier, New York, pp: 365-418.
Valencia-Jiménez A., Arboleda V. J. W., López-Ávila A. L. and Grosside-Sá M. F. 2008. Digestive α-amylases from Tecia solanivora larvae (Lepidoptera: Gelechiidae): response to pH, temperature and plant amylase inhibitors. Bulletin of Entomological Research, 98 (06): 575-579.
Yezdani, E., Sendi, J. J., Zibaee, A. and Ghadamyari, M. 2010. Enzymatic properties of α-amylase in the midgut and the salivary glands of mulberry moth, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). Comptes Rendus Biologies, 333: 17-22.
Zeng, F. and Cohen, A. C. 2000. Partial characterization of α-amylase in the salivary glands of Lygus hesperus and L. Lineolaris. Comparative Biochemistry and Physiology, 126B: 9-16.
Zibaee, A., Bandani, A. R., Kafil, M. and Ramzi, S. 2008. Characterization of α-amylase in the midgut and the salivary glands of rice striped stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Journal of Asia-Pacific Entomology, 11 (4): 201-205.
Zibaee A. 2012. Digestive enzymes of large cabbage white butterfly, Pieris brassicae L. (Lepidoptera: Pieridae) from developmental and site of activity perspectives. Italian Journal of Zoology, 79: 13-26.