Biochemical characterization of digestive carbohydrases of the tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae) larvae in response to feeding on six tomato cultivars

Authors
1 Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran.
2 Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
3 Department of Plant protection, Faculty of Agricultural Sciences and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
Abstract
The tomato leaf miner, Tuta absoluta (Meyrick) is an imported pest and serious threat to tomato production in farms and greenhouses of Iran. Use of genetically engineered plants expressingcarbohydrase inhibitors is one of the non-chemical methods for controlling insect pests, and knowledge about enzymatic properties of carbohydrases will help us to achieve this goal. Therefore, in present study we characterized biochemical properties of digestive carbohydrases in the midgut of last larval instar of T. absoluta fed on different tomato cultivars (Kingston, Riogrande, Super Luna, Super Chief, Super strain B and Calj). While the highest amylolytic activity was on Super strain B, the lowest was on Super Chief. The optimal pH and temperature for α-amylase were found to be at pH 9.0 and 45 °C, respectively. As calculated from Lineweaver-Burk plots, the highest Km and Vmax values for α-amylase obtained in Super Chief and Super Luna cultivars were 0.565 ± 0.11mM and 2.287 ± 0.4mM/min, respectively. The effects of different compounds on amylolytic activity indicated that CaCl2, MgCl2, NaCl and KCl increased amylase activity, whereas EDTA, ZnCl2 and BaCl2 decreased the enzyme activity in Super Luna cultivar. The highest activity of α-/ß-glucosidases was observed at pH 6.0 and 7.0, respectively, whereas the optimal pH for α/ß-galactosidases was at 5.0. The highest specific activity of α-/ß-glucosidases was determined in Riogrande-fed larvae, whereas the highest α/ß-galactosidases activity was in the larvae fed on Riogrande and Calj cultivars, respectively. By the native- PAGE, two bands were clearly detected for α-amylase. Since the larvae reared on Kingston showed lowest carbohydrase activities, this cultivar could possibly be suggested as the least suitable host for feeding of T. absoluta.
Keywords

Aghaali, N., Ghadamyari, M. and Ajamhasani, M. 2012. Biochemical characterization of glucosidases and galactosidases from rosaceae branch borer, Osphranteria coerulescens Redt. (Col.: Cerambycidae). Romanian Journal of Biochemistry, 49 (2): 125-137.
Asadi, A., Ghadamyari, M., Sajedi, H. R., Jalali, J. and Tabari, M. 2010. Biochemical characterization of midgut, salivary glands and haemolymph α-amylases of Naranga aenescens. Bulletin of Insectology, 63 (2): 175-181.
Baldwin, I. T. 2001. An ecologically motivated analysis of plant-herbivore interactions in native tobacco. Plant Physiology, 127: 1449-1458.
Baniameri V. and Cheraghian A. 2012. The first report and control strategies of Tuta absoluta in Iran. Bulletin OEPP/EPPO Bulletin, 42 (2): 322-324.
Bernfeld, P. 1955. Amylase, α and β. In: Colowick, S.P., Kaplan, N.O. (Eds.), Methods in Enzymology. Academic Press, New York, pp.149-158.
Bigham, M., Hosseininaveh V. and Darvishzadeh A. 2013. Activity of digestive proteinases and carbohydrases in the alimentary tract of the fig leaf roller, Choreutis nemorana Hübner (Lepidoptera: Choreutidae). Archives Phytopathology and Plant Protection, 46: 2035-2042.
Birkett, M. A., Campbell, C. A. M., Chamberlain, K., Guerrieri, E., Hick, A. J., Martin, J. L., Matthes, M., Napier, J. A., Pettersson, J., Pickett, J. A., Poppy, G. M., Pow, E. M., Pye, B. J., Smart, L. E., Wadhams, G. H., Wadhams, L. J. and Woodcock, C. M. 2000. New roles for cis-jasmone as an insect semiochemical and in plant defense. Proceedings of the National Academy of Sciences of the United States of America, 97: 9329-9334.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
Chapman, R. F. 1998. The Insects: Structure and Function. Cambridge University Press, Cambridge, 788 pages.
Darvishzadeh, A., Hosseininaveh, V. and Salimian Rizi, S. 2014. Enzymatic activity of α-amylase in alimentary tract Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae): Characterization and Compartmentalization. Arthropods, 3 (3): 138-146.
Davis, B. J. 1960. Disc electrophoresis II. Method and application to human serum protein. Annals of the New York Academy of Sciences, 121: 404-427.
Dow, J. A. T. 1986. Insect midgut function. Advances in Insect Physiology, 19: 187-328.
Esmaeily, M. and Bandani, A. R. 2015. Interaction between larval α-amylase of the tomato leaf miner, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) and proteinaceous extracts from plant seeds. Journal of Plant Protection Research, 55 (3): 278-286.
Ferreira, C., Torres, B. B. and Terra, W. R 1998. Substrate specificities of midgut β- glycosidases from insects of different orders. Comparative Biochemistry and Physiology, 119B: 219-225.
Franzl, S., Ackermann, I. and Nahrstedt, A. 1989. Purification and characterization of a β-glucosidase (linamarase) from the haemolymph of Zygaena trifolii Esper 1783 (Insecta, Lepidoptera). Experientia, 45: 712-718.
Fordyce, J. A. and Agrawal, A. A. 2001. The role of plant trichomes and caterpillar group size on growth and defense of the pipe vine swallowtail Battus philenor. Journal of Animal Ecology, 70: 997-1005.
Ghadamyari, M., Hosseininaveh, V. and Sharifi, M. 2010. Partial biochemical characterization of α- and β-glucosidases of lesser mulberry pyralid, Glyphodes pyloalis Walker (Lep.: Pyralidae). Comptes Rendus Biologies, 333: 197-204.
Gholamzadeh Chitgar, M., Ghadamyari, M., Sharifi, M. and Hassan Sajedi, R. 2014. Partial characterization digestive carbohydrases midgut Figure tree skeletonizer moth Choreutis nemorana (Lep.: Choreutidae). Trakia Journal of Sciences, 12 (1): 27-37.
Girard, C., Le Métayer, M., Bonadé-Bottino, M., Pham-Delègue, M. H. and Jouanin, L. 1998. High level of resistance to proteinase inhibitors may be conferred by proteolytic cleavage in beetle larvae. Insect Biochemistry and Molecular Biology, 28: 229-237.
Hori, K. 1971. Studies on the feeding habits of Lygus disponsi Linnavuori (Hemiptera: Miridae) and the injury to its host plants. I. Histological observations of the injury. Applied Entomology and Zoology, 6: 84-90.
Jongsma, M. A. and Bolter, C.1997. The adaptation of insect to plant protease inhibitors. Journal of Insect Physiology, 43: 885-896.
Kaur R., Kaur N. and Gupta A. K. 2014. Structural features, substrate specificity, kinetic properties of insect α-amylase and specificity of plant α-amylase inhibitors. Biochemistry and Physiology, 116: 83-93.
Low, N. H., Vong, K. V. and Spornes, P. 1986. A new enzyme, β-glucosidase in honey. Journal of Apicultural Research, 25: 178-181.
Marana, S. R., Terra, W. R. and Ferreira, C. 2000. Purification and properties of a ß-glycosidase purified from midgut cells of Spodoptera frugiperda (Lepidoptera) larvae. Insect Biochemistry and Molecular Biology, 30: 1139-1146.
Matsumura, S. 1934. Genetical and physiological studies on amylase activity in the digestive juice and haemolymph of the silkworm, Bombyx mori. L. Bulletin Nagano-Ken Sericulture Experiment Station, 28: 1-24.
Mello, M. O. and Silva-Filho, M. C. 2002. Plant-insect interactions: An evolutionary arms race between two distinct defense mechanisms. Brazilian Journal of Plant Physiology, 14: 71-81.
Mendiola-Olaya, E., Valencia-Jiménez, A., Valdes-Rodriguez, S., Delano-Frier, J. and Blanco-Labra, A. 2000. Digestive amylase from the larger grain borer, Prostephanus truncatus Horn. Comparative Biochemistry and Physiology, 126B: 425.433.
Nemati Kalkhoran, M., Naseri, B., Rahimi Namin, F. and Kouhi, D. 2013. Life table parameters and digestive enzymes activity of Helicoverpa armigera (Lep.: Noctuidae) on different tomato cultivars. Journal of Entomological Society of Iran, 33 (2): 45-58.
Ozgur, E., Yucel, M. and Oktem, H. A. 2009. Identification and characterization of hydrolytic enzymes from the midgut of the cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Turkish Journal of Agriculture and Forestry 33: 285-294.
Paulillo, L. C. M. S., Lopes, A. R., Cristofoletti, P. T., Parra, J. R. P., Terra, W. R. and Silva-Filho, M. C. 2000. Changes in midgut endopeptidase activity of Spodoptera frugiperda (Lepidoptera: Noctuidae) are responsible for adaptation to soybean proteinase inhibitors. Journal of Economic Entomology, 93: 892-896.
Ramzi, S. and Hosseininaveh, V. 2010. Biochemical characterization of digestive α-amylase, α-glucosidase and β-glucosidase in pistachio green stink bug, Brachynema germari Kolenati (Hemiptera: Pentatomidae). Journal of Asia-Pacific Entomology, 13: 215-219.
Riseh, N. S., Ghadamyari, M. and Motamediniya, B. 2012. Biochemical characterization of α & β-glucosidases and α- & β-galactosidases from red palm weevil, Rhynchophorus ferrugineus Olivieri (Col.: Curculionide). Plant Protection Science, 48: 85-93.
Roditakis E., Skarmoutsou C. and Staurakaki M. 2013. Toxicity of insecticides to populations of tomato borer Tuta absoluta (Meyrick) from Greece. Pest Management Science, 69: 834-840.
SAS Institute. 1997. SAS/STAT user’s guide for personal computers. Cary, NC: SAS Institute.
Shade, R. E., Schroeder, H. E., Pueyo, J. J., Tabe, L. M., Murdock, L. L., Higgins, T. J. V., and Chrispeels, M. J. 1994. Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Bio/Technology 12: 793-796.
Sharifi, M., Ghadamyari, M., Moghadam, M. M. and Saiidi, F. 2011. Biochemical characterization of digestive carbohydrases from Xanthogaleruca luteola and inhibition of its α-amylase by inhibitors extracted from the common bean. Archives of Biological Science, 63: 705-716.
Sharifloo, A. Zibaee, A., Jalal Sendi, J. and Talebi Jahromi, Kh. 2016. Characterization of a Digestive α-Amylase in the Midgut of Pieris brassicae L. (Lepidoptera: Pieridae) Frontiers in Physiology, Frontiers in Physiology, 7: 96.
Silva G. A., Picanço M. C. and Bacci L., Crespo A. L. B., Rosado J. F. 2011. Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Management Science, 67: 913-920.
Sivakumar, S., Mohan, M., Franco, O. L. and Thayumanavan, B. 2006. Inhibition of insect pest α-amylases by little and finger millet inhibitors. Biochemistry and Physiology, 85: 155-160.
Slansky, F. 1982. Insect nutrition: an adaptationists perspective. The Florida Entomologist, 65: 45-71.
Swart, C. C., Deaton, L. E. and Felgenhauer, B. E. 2006. The salivary gland and salivary enzyme of the giant water bugs (Heteroptera; Belostomatidae). Comparative Biochemistry and Physiology, 145: 114-122.
Tanabe, S. and Kusano, T. 1984. Changes of the haemolymph amylase activity during development and its properties in the cabbage armyworm, Mamestra brassicae L. Kontyu, 542 (4): 472-481.
Terra, W. R. and Ferreira, C. 2012. Biochemistry and molecular biology of digestion, In: Gilbert, L. I. (Ed.), Insect Molecular Biology and Biochemistry, Elsevier, New York, pp: 365-418.
Valencia-Jiménez A., Arboleda V. J. W., López-Ávila A. L. and Grosside-Sá M. F. 2008. Digestive α-amylases from Tecia solanivora larvae (Lepidoptera: Gelechiidae): response to pH, temperature and plant amylase inhibitors. Bulletin of Entomological Research, 98 (06): 575-579.
Yezdani, E., Sendi, J. J., Zibaee, A. and Ghadamyari, M. 2010. Enzymatic properties of α-amylase in the midgut and the salivary glands of mulberry moth, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). Comptes Rendus Biologies, 333: 17-22.
Zeng, F. and Cohen, A. C. 2000. Partial characterization of α-amylase in the salivary glands of Lygus hesperus and L. Lineolaris. Comparative Biochemistry and Physiology, 126B: 9-16.
Zibaee, A., Bandani, A. R., Kafil, M. and Ramzi, S. 2008. Characterization of α-amylase in the midgut and the salivary glands of rice striped stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Journal of Asia-Pacific Entomology, 11 (4): 201-205.
Zibaee A. 2012. Digestive enzymes of large cabbage white butterfly, Pieris brassicae L. (Lepidoptera: Pieridae) from developmental and site of activity perspectives. Italian Journal of Zoology, 79: 13-26.