Bajons, P., Klinger, G. and Schlosser, V. 2005. Determination of stomatal conductance by means of infrared thermography. Infrared Physics and Technology, 46: 429-439.
Bhattacharjee, S. K. and Banerji, B. K. 2010. The Complete Book of Roses, Aavishkar Publisher, India.
Chaerle, L., Van Caeneghem, W., Messens, E., Lambers, H., van Montagu, M. and van der Straeten, D. 1999. Presymptomatic visualization of plant–virus interactions by thermography. Nature Biotechnology, 17: 813-816.
Chiwaki, K., Nagamori, S. and Inoue, Y. 2005. Predicting bacterial wilt disease of tomato plants using remotely sensed thermal imagery. Journal of Agricultural Meteorology, 61 (3): 153-165.
Darras, A. I., Terry, L. A. and Joyce, D. C. 2005. Methyl jasmonate vapour treatment suppresses specking caused by Botrytis cinerea on cut Freesia hybrid L. flowers. Postharvest Biology and Technology, 38: 175-182.
Haykin, S. 1999. Neural Networks: A Comprehensive Foundation, 2nd Edition, Prentice-Hall.
Inoue, Y. 1990. Remote detection of physiological depression in crop plants with infrared thermal imagery. Japanese Journal of Crop Science, 59: 762-768.
Jones, H. G. 1992. Plant and microclimate, 2nd Edition, Cambridge University Press, Cambridge, UK.
Jones, H. G., Stoll, M., Santoa, T., De Sousa, C., Chaves, M. M. and Grant, O. M. 2002. Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. Journal of Experimental Botany, 53: 2249-2260.
Lindenthal, M., Steiner, U., Dehne, H. W. and Oerke, E. C. 2005. Effect of Downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology, 95 (3): 233-240.
Oerke, E. C., Steiner, U., Dehne, H. W. and Lindenthal, M. 2006. Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions. Journal of Experimental Botany, 57: 2121-2132.
Oerke, E. C., Fröhling, P. and Steiner, U. 2011. Thermographic assessment of scab disease on apple leaves. Precision Agriculture, 12 (5): 699-715.
Pie, K. and De Leeuw, G. T. N. 1991. Histopathology of the initial stages of the interaction between rose flowers and Botrytis cinerea. Netherlands Journal of Plant Pathology, 97: 335-344.
Stoll, M., Schultz, H. R., Baecker, G. and Berkelmann-Loehnertz, B. 2008. Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery. Precision Agriculture, 9: 407-417.
Serek, M., Woltering, E., Sisler, E., Frello, S. and Sriskandarajah, S. 2006. Controlling ethylene responses in flowers at the receptor level. Biotechnology Advances. 24: 368-381.
Macnish, A. J., Morris, K. L., De Theije, A., Mensink, M. G. J., Boerrigter, H. A. M., Reid, M. S., Jiang, C. Z. and Woltering, E. J. 2010. Sodium hypochlorite: A promising agent for reducing Botrytis cinerea infection on rose flowers. Postharvest Biology and Technology, 58: 262-267.
Meir, Sh., Droby, S., Davidson, H., Alsevia, S., Cohen, L., Horev, B. and Philosoph-Hadas, S. 1998. Suppression of Botrytis rot in cut rose flowers by postharvest application of methyl jasmonate. Postharvest Biology and Technology, 13: 235-243.
Wang, M., Ling, N., Dong, X., Zhu, Y., Shen, Q. and Guo, S. 2012. Thermographic visualization of leaf response in cucumber plants infected with the soil-borne pathogen Fusarium oxysporum f. sp. Cucumerinum. Plant Physiology and Biochemistry, 61: 153-161.