Current and future potential distribution of maize chlorotic mottle virus and risk of maize lethal necrosis disease in Africa

10.48311/jcp.2016.1295
Volume 5, Issue 2
June 2016
Pages 215-228

Authors

1 Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA), Entebbe, Uganda.

2 African Insect Science for Food and Health (ICIPE), Nairobi, Kenya.

Abstract
Maize Lethal Necrosis (MLN), caused by the synergistic effect of maize chlorotic mottle virus (MCMV; Tombusviridae: Machlomovirus) and any potyvirus, has the potential to devastate maize production across Africa. Since the first report in Kenya in 2011, MLN has spread to Tanzania, Uganda, Rwanda, and probably other surrounding countries. To understand the spatiotemporal distribution of MCMV and MLN risk in Africa, we developed ecological niche models using a genetic algorithm (GARP). Model inputs included climatic data (temperature and rainfall) and known detections of MCMV and MLN across Africa. Model performances were more statistically significant (p < 0.05) than random expectations, with Receivership Operating Curves (ROC) / Area Under Curve (AUC) scores above 86% and Kappa values above 0.936. Field observations generally confirmed model predictions. MCMV and MLN-positive incidences across the region corresponded to a variety of temperature and precipitation regimes in the semi-arid and sub-humid tropical sectors of central and eastern Africa. Ethiopia, Tanzania, and Democratic Republic of Congo have the potential to lose 662,974, 625,690 and 615,940 km2 potential maizelandmass, respectively. In terms of proportional loss of national maize production area, Rwanda, Burundi, and Swaziland have the potential to lose each 100%, and Uganda 88.1%. Future projections indicate smaller potential areas (-18% and -24% by 2020 and 2050, respectively) but climates consistent with current MCMV distributions and MLN risk are predicted even into the future. In conclusion, MLN risk in Africa is high, hence the need for better allocation of resources in management of MLN, with special emphasis on eastern and central Africa, which are and will remain hotspots for these problems in the future.

Keywords

Adams, I. P., Harju, V. A., Hodges, T., Hany, U., Skelton, A., Rai, S., Deka, M. K., Smith, J., Fox, A., Uzayisenga, B., Ngaboyisonga, C., Uwumukiza, B., Rutikanga, A., Rutherford, M., Ricthis, B., Phiri, N. and Boonham, N. 2014. First report of maize lethal necrosis disease in Rwanda. New Disease Reports, 29: 22. (http:// dx.doi.org/10.5197/j.2044-0588.2014.029.022).
Anderson, R. P., Lew, D. and Peterson, A. T. 2003. Evaluating predictive models of species' distributions: criteria for selecting optimal models. Ecological Modelling, 162: 211-232.
Cabanas, D. W., Higashi, C. H. V. S. and Bressan, A. 2013. Dissecting the mode of Maize Chlorotic Mottle Virus transmission (Tombusviridae: Machlomovirus) by Frankliniella williamsi (Thysanoptera: Thripidae). Journal of Economic Entomology, 106: 16-24.
Carrera-Martínez, H., Losoya-Saldaña, H., Mendoza-Zamora, C. and Alvizo-Villasana, H. 1989. Inmunoabsorción enzimática (ELISA) en la identificación y distribución del virus moteado clorótico del maíz (VMCM) en el estado de México. Revista Mexicana de Fitopatología 7: 20-25. (In Mexican Spanish).
Castillo, J. and Hebert, T. 1974. Nueva enfermedad virosa afectando al maiz en el Peru. Fitopatologia, 9 (2): 79-84. (In Spanish).
CIMMYT. 2012. Annual Report. CGIAR Research Program MAIZE, CIMMYT, Mexico D. F., Mexico.
Deininger, K. and Byerlee, D. 2011. Rising Global Interest in Farmland: Can It Yield Sustainable and Equitable Benefits? http://dx.doi.org/10.1596/978-0-8213-8591-3.
Elith, J., Graham, C. H., Anderson, R. P., Dudık, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC., Peterson, A. T., Phillips, S. J., Richardson, K. S., Scachetti-Pereira, R., Schapire, R. E., Sobero´n, J., Williams, S., Wisz, M. S. and Zimmermann, N. E. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29: 129-151.
FSNWG. 2012. Regional Food Security Situation and Outlook. Food Security and Nutrition Working Group, http://www. disasterriskreduction.net/east-central-africa/ fsnwg.
Hay, S. I. and Snow, R. W. 2007. The malaria atlas project: developing global maps of malaria risk. PLOS Medicine, 3: 2204-2208.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. and Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25: 1965-1978.
IPCC. 2015. Data Distribution Centre (DDC). Intergovernmental Panel on Climate Change. http://www.ipcc-data.org/.
IPPC. 2014. New pest of maize: maize lethal necrosis in Uganda. IPPC Official Pest Report, No. UGA-01/2, No. UGA-01/2. Rome, Italy: FAO. https://www.ippc.int/.
Jiang, X. Q. T., Meinke, L. J., Wright, R. J., Wilkinson, D. R. and Campbell, J. E. 1992. Maize chlorotic mottle virus in Hawaiian-grown maize–vector relations, host range and associated viruses. Crop Protection, 11: 248-254.
Lafferty, K. D. 2009. The ecology of climate change and infectious diseases. Ecology, 90 (4): 888-900.
Lane, A. and Jarvis, A. 2007. Changes in Climate will modify the Geography of Crop Suitability: Agricultural Biodiversity can help with Adaptation. SAT eJournal, 4 (1): 1-12.
Liria, J. and Navarro, J. 2010. Modelo De Nicho Ecológico En Haemagogus Williston (Diptera: Culicidae), Vectores Del Virus De La Fiebre Amarilla. Reviews of Biomedicine, 21: 149-161.
LoPez-Cardenas, J., Bravo, F. C. G., Schettino, P. M. S., Solorzano, J. S. G, Barba, E. R. Z., Mendez, J. M., Nchez-Cordero, V. S., Peterson, A. T., and Ramsey, J. M. 2005. Fine-Scale Predictions Of Distributions Of Chagas Disease Vectors In The State Of Guanajuato, Mexico Modeling/Gis, Risk Assessment, Economic Impact. Journal of Medical Entomology, 42 (6), 1068-1081.
Mak, S., Morshed, M., and Bonnie, H. 2010. Ecological niche modeling of lyme disease in British Columbia. Canada Journal of Medical Entomology, 47 (1): 99-105.
Makumbi, D. and Wangai, A. 2013. Maize lethal necrosis (MLN) disease in Kenya and Tanzania: Facts and actions. CIMMYT- KARI. http://www.cimmyt.org/en/where-we-work/africa/item/maize-lethal-necrosis-mln-disease-in-kenya-and-tanzania-facts-and-actions.
MDRAT. 2012. The Status of Maize Lethal Necrosis Disease and General Maize Performance in Kenya. Multi-Disciplinary Rapid Assessment Team, Ministry of Agriculture, Kenya.
Miano, F., Kibaki, J. and Viollet, D. 2013. Controlling Maize Lethal Necrosis Disease via Vector Management. AFSTA.
Nault, L. R., Gordon, D. T., and Loayza, J. C. 1981. Maize virus and mycoplasma diseases in Peru. International Journal of Pest Management, 27 (3): 363-369.
Niblett, C. and Clafin, L. 1978. Corn lethal necrosis, a new virus disease of corn in Kansas. Plant Distributional Reports, 62: 15-19.
Ojwang’, G. O., Agatsiva, J. and Situma, C. 2010. Analysis of Climate Change and Variability Risks in the Smallholder Sector. http://www. fao.org/docrep/013/i1785e/i1785e00.pdf.
Pearson, R. G., Raxworthy, C. J., Nakamura, M. and Peterson, A. T. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34: 102-117.
Pearson, R. G., Thuiller, W., Araujo, M. B., Martinez-Meyer, E., Brotons, L. and McClean, C. 2006. Model-based uncertainty in species range prediction. Journal of Biogeography, 33: 1704-1711.
Peterson, A. T. 2009. Shifting suitability for malaria vectors across Africa with warming climates. BMC Infectious Diseases, 9 (1): 59. DOI:10.1186/1471-2334-2359.
Peterson, A. T. and Shaw, J. 2003. Lutzomyia vectors for cutaneous leishmaniasis in Southern Brazil: ecological niche models, predicted geographic distributions, and climate change effects. International Journal for Parasitology, 33: 919-931.
Peterson, A. T. and Vieglais, D. A. 2001. Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. BioScience, 51: 363-371.
Peterson, A. T., Benz, B. W. and Papes¸ M. 2007. Highly pathogenic H5N1 Avian influenza: entry pathways into North America via bird migration. PLOS ONE 2 (2): e261. Doi: 10.1371/journal.pone. 0000261.
Peterson, A. T., Martı´nez-Campos, C., Nakazawa, Y. and Martı´nez-Meyer, E. 2005. Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases. Transactions of the Royal Society of Tropical Medicine and Hygiene, 99: 647-655.
RAB. 2013. Who to Blame for the Infected Maize Seeds Saga? Rwanda Agricultural Board, http://allafrica.com/stories/201309280159.html.
Rogers, D. J., Randolph, S. E., Snow, R. W. and Hay, S. I. 2002. Satellite imagery in the study and forecast of malaria. Nature, 415: 710-715.
Sandoval-Ruiz, C. A., Zumaquero-Rios, J. L. and Rojas-Soto, O. R. 2008. Predicting geographic and ecological distributions of Triatomine species in the Southern Mexican State of Puebla using ecological niche modeling. Journal of Medical Entomology, 45 (3): 540-546.
Sarkar, S., Strutz, S. E., Frank, D. M., Rivaldi, C. L. and Sissel, B. 2010. Chagas Disease Risk in Texas. PLoS Neglected Tropical Diseases, 4 (10): e836. Doi: 10.1371/ journal.pntd.0000836.
Smale, M., Byerlee, D. and Jayne, T. 2011. Maize Revolutions in Sub-Saharan Africa. World Bank Policy Research Working Paper No. 5659.
Stockwell, D. and Peters, D. 1999. The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science, 13: 143-158.
Terribile, L. C., Diniz-Filho, J. A. F., and De Marco, Jr. 2010. How many studies are necessary to compare niche-based models for geographic distributions? Inductive reasoning may fail at the end. Brazilian Journal of Biology, 70 (2): 263-269.
Teyssandier, E. E., Nome, S. F. and Dalbo, E. 1983. Maize virus diseases in Argentina. In: Gordon, D. T., Knoke, J. K., Nault, L. R. and Ritter, R. M. (Eds.), Proceedings of the International Maize Virus Disease Colloquium and Workshop, 2-6 August, 1982 Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, Ohio, pp. 93-99.
Tsoar, A., Allouche, O., Steinitz, O., Rotem, D. and Kadmon, R. 2007. A comparative evaluation of presence only methods for modelling species distribution. Diversity and Distributions, 13: 397-405.
Wangai, A. W., Redinbaugh, M. G., Kinyua, Z. M., Miano, D. W., Leley, P. K., Kasina, M., Mahuku, G., Scheets, K. and Jeffers, D. 2012. First report of Maize chlorotic mottle virus and maize lethal necrosis in Kenya. Plant Disease, 96 (10): 1582-1583.
WorldClim. 2015. WorldClim - Global Climate Data. Free climate data for ecological modeling and GIS. http://www.worldclim.org.
Xie, L., Zhang, J., Wang, Q., Meng, C., Hong, J., Zhou, X. 2011. Characterization of maize chlorotic mottle virus associated with maize lethal necrosis disease in China. Journal of Phytopathology, 159 (3):191-193.
zu Dohna, H. and Pineda-Krch, M. 2010. Fitting parameters of stochastic birth. Death models to metapopulation data. Theoretical Population Biology, 78: 71-76.