Characterization of digestive α-amylase in the midgut of willow leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae)

10.48311/jcp.2014.1110
Volume 3, Issue 2
June 2014
Pages 245-254

Authors

1 Department of Plant Protection, Faculty of Agricultural Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran.

2 Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, 41635-1314, Rasht, Iran.

Abstract
Willow leaf beetle, Plagiodera versicolora is an important pest of willow trees that feeds on the leaves both as larvae and as adults. -Amylases (EC 3.2.1.1) are the major insect digestive enzymes that catalyze the endohydrolysis of long -1,4-glucan chains such as starch and glycogen. In the current study, -amylase activity was studied in the midgut of larvae and adults of P. versicolora. Amylase activity in the midgut of larvae and adults was 0.6807 and 0.1162 µmol/min/mg protein, respectively. The optimal pH for -amylase activity of larvae and adults was 4 and 8, respectively and the optimal temperature for both was 35 °C. The enzyme activity of larvae was inhibited by the addition of Na2+, K+ and Zn2+. K+ (at 5 mmol) had the most positive effect on α-amylase activity in adults. EGTA had significant influence on decreasing the enzyme activity in larvae. EDTA had the most effect on increasing the activity of the enzyme in adults. Plant amylase inhibitors play important role against insect pests. Therefore, the characterization of digestive enzymes and the examination of inhibitors on the enzyme activity could be useful in tackling insect pests.

Keywords

Abaii, M. 2000. Pest of forest trees and shrubs of Iran. Ministry of Agriculture, Agricultural Research, Education and Extension Organization, Tehran. 178 pp.
Abraham, E. G., Nagaragu, J. and Datta, R. K. 1992. Biochemical study of amylase in the silkworm, Bombyx mori L.: comparative analysis in diapausing and nondiapausing strain. Insect Biochemistry Molecular Biology, 22: 867-873.
Applebaum, S. W. and Konijn, A. M. 1965. The utilization of starch by larvae of the flour beetle, Tribolium castaneum. Journal of Nutrition, 85: 275-282.
Aslan, L. 2001. The biology and damage of Plagiodera versicolora Laich. (Coleoptera, Chrysomelidae, Chrysomelinae) an important willow pest in Erzurum conditions. Ziraat Fakultesi Dergisi, Ataturk Universitesi, 32: 5-7.
Baker, J. E. 1983. Properties of amylase from midguts of larvae of Sitophilus zeamais and Sitophilus granarius. Insect Biochemistry, 13: 421-428.
Baker, J. E. and Woo, S. M. 1985. Purification, partial characterization and postembryonic levels of amylases from Sitophilus oryzae and Sitophilus granarius. Insect Biochemistry and Physiology,2: 415-428.
Bandani, A. R., Amiri, B., Butt, T. M. and Gordon-Weeks, R. 2001. Effects of efrapeptin and destruxin, metabolites of entomogenous fungi, on the hydrolytic activity of a vacuolar type ATPase identified on the brush border membrane vesicles of Galleria mellonella midgut and on plant membrane bound hydrolytic enzymes. Biochemica et Biophysica Acta, 1510: 367-377.
Barbosa Pereira, P. J., Lozanov, V., Patthy, A., Huber, R., Bode, W., Pongor, S. and Strobl, S. 1999. Specific inhibition of insect α-amylases: yellow meal worm α-amylase in complex with the Amaranth α-amylase inhibitor at 2.0 Å Resolution. Structure, 7: 1079-1088.
Bernfeld, P. 1955. Amylases, α and β. Methods in Enzymology, 1: 149-158.
Buonocore, V., Poerio, E., Silano, V. and Tomasi, M. 1976. Physical and catalytical properties of α-amylases from Tenebrio molitor L. larvae. Biochemical Journal,153: 621-625.
Çanakçıoğlu, H. and Mol, T. 1998. Forest entomology: pests and beneficial insects. İstanbul University Press, İstanbul.
Çanakçıoğlu, H. and Mol, T. 2000. Pests of seeds and cultured plants. İstanbul University Press, İstanbul.
Crowe, M. L. 1995. Daytime mechanisms of reaggregation in imported willow leaf beetle, Plagiodera versicolora larvae (Coleoptera: Chrysomelidae). Animal Behaviour, 50: 259-266.
D'Amico, S., Gerday C. and Feuer, G. 2000. Structural similarities and evolutionary relationships in chloride-dependent α-amylases. Gene, 253: 95-105.
Daone, W. W., Abraham, I., Kolar, M. M., Martenson, R. E. and Deibler, G. E. 1975. Purified Drosophila alpha-amylase isozyme. In: Martet, C. L. (Ed.), lsozyme IV, Academic Press, New York. pp. 585-607.
Da Silva, M. C. M., Mello, L. V., Coutinho, M. V., Rigden, D. J., Neshich, G., Chrispeels M. J. and Grossi-de-Sa, M. F. 2004. Mutants of common bean alpha-amylase inhibitor-2 as an approach to investigate binding specificity to alpha-amylases. Pesqous Agropec Bras Brasillia, 39: 201-208.
Ferreira, C., Marana, S. R., Silva, C. and Terra, W. R. 1999. Properties of digestive glycosidase and peptidase and the permeability of the peritrophic membranes of Abracris flavolineata (Orthoptera: Acrididae). Comparative Biochemistry and Physiology, Part B. 123: 241-250.
Franco, O. L., Rigden, D. J., Melo, F. R. and Grossi-de-Sa´, M. F. 2002. Plant α -amylase inhibitors and their interaction with insect -amylases: structure, function and potential for crop protection. European Journal of Biochemistry, 269: 397-412.
Goshal, D., Sen, S. K. and Goyal, A. 2001. Introduction and expression of cowpea trypsin inhibitor (CpTI) gene in transgenic tobacco. Journal of Plant Biochemistry and Biotechnology, 10: 19-25.
Gutierrez, C., Sanchez-Mong, R., Gomez, L., Ruiz-Tapiador, M., Castanera, M. and Salcedo, G. 1990. Alpha-amylase activities of agricultural insect pests are specifically affected by different inhibitor preparations from wheat and barley endosperms. Plant Science, 72: 37-44.
Hood, C. E. 1940. Life history and control of the imported willow leaf beetle. U.S. Department of Agriculture Circular, 572: 1-9.
Ishihara, M., Hayashi, T. and Ohgushi, T. 1999. Life cycle of the willow leaf beetle, Plagiodera versicolora (Coleoptera: Chrysomelidae), in Ishikari (Hokkaido, Japan). Entomological Science, 2: 57-60.
Khorram, M. S., Farshbaf Pour Adab, R., Yazdaniyan, M. and Jafarnia, S. 2010. Digestive α-amylase from Leptinotarsa decemlineta Say (Coleoptera: Chrysomelidae): response to pH, temperature and some mineral compounds. Environmental Biology,4: 101-107.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193: 265-275.
Maqbool, S. B., Riazuddin, S., Loc, N. T., Gatehouse, A. M. R., Gatehouse, J. A. and Christou, P. 2001. Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Molecular Breeding, 7: 85-93.
Marchaiah, J. P. and Vakil, U. K. 1984. Isolation and partial characterization of -amylase components evolved during early wheat germination. Journal of Biosciences,6: 47-59.
Mehrabadi, M., Bandani, A. R. 2009. Study on salivary glands α-amylase in wheat bug Eurygaster maura (Hemiptera: Scutelleridae). American Journal of Applied Science, 6: 555-560.
Mendiola-Olaya, E., Valencia-Jimenez, A., Valdes-Rodriguez, S., Delano-Frier, J. and Blanco- Labra, A. 2000. Digestive amylase from the larger grain borer, Prostephanus truncates Horn. Comparative Biochemistry and Physiology, Part B. 126: 425-433.
Oliveira-Neto, O., Batista, J. A. N. and Riggden, D. J. 2003. Molecular cloning of α-amylase from the cotton ball weevil, Anthonomus grandis, and structural relations to plant inhibitors: an approach to insect resistance.Journal of Protein Chemistry,22: 77-87.
Podoler, H. and Applebaum, S. W. 1971. The alpha-amylase of beetle, Callosobruchus chinensis. Biochemistry Journal, 121: 321-325.
Priya, S., Kaur, N. and Gupta, A. K. 2010. Purification, characterization and inhibition studies of a-amylase of Rhyzopertha dominica. Pesticide Biochemistry and Physiology, 98: 231-237.
SAS Institute. 1997. SAS/STAT User's Guide for Personal Computers. SAS Institute, Cary, Nc.
Schnaider, Z. 1957. Szkodniki wierzb uprawnych. Las Polski, 31: 8-9.
Shivkumar, S., Mohan, M., Franco, O. L. and Thayumanavan, B. 2006. Inhibition of insect pest -amylases by little and finger millet inhibitors. Pesticide Biochemistry Physiology, 85: 155-160.
Terra, W. R. and Ferreira, C. 1994. Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiology, B 109: 1-62.
Terra, W. R., Ferreira, C., Jorda˜ o, B. P. and Dillon, R. J. 1996. Digestive enzymes. In: Lehane, M. J., Billingsley, P. F. (Eds.), Biology of the Insect Midgut. Chapman and Hall, London, pp. 153-194.
Toros, 1996. Pests of ornamental and garden plants. Ankara University Press, Ankara.
Wade, M. J. 1994. The biology of the imported willow leaf beetle, Plagiodera versicolora (Laicharting). In: Jolivet, P. H., Cox, M. L. and Petitpierre, E. (Eds.), Novel Aspects of the Biology of Chrysomelidae. Kluwer Academic Publishers, Dordrecht, pp. 541-547.

Zibaee, A. and Hajizadeh, J. 2013. Proteolytic activity in Plagiodera versicolora Laicharting (Coleoptera: Chrysomelidae): Characterization of digestive proteases and effect of host plants. Journal of Asia-Pacific Entomology, 16: 329-334.


Zibaee, A., Bandani, A., R., Kafil, M. and Ramzi, S. 2008. Characterization of α-amylase in the midgut and the salivary glands of rice striped stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Journal of Asia-Pacific Entomology, 11: 201-205.