Association between agronomic traits and molecular markers with take-all disease severity in bread wheat Triticum aestivum

Volume 11, Issue 1
March 2022
Pages 39-59

Document Type : Original Research

Authors

1 Department of Plant Protection, Faculty of Agriculture, Vali -e- Asr University of Rafsanjan, Rafsanjan, Iran.

2 Department of Genetics and Plant Production, Faculty of Agriculture, Vali -e- Asr University of Rafsanjan, Rafsanjan, Iran.

Abstract
Identifying resistant genotypes is necessary to control wheat take-all disease Gaeumannomyces graminis var. tritici. In this study, 30 bread wheat genotypes were evaluated under greenhouse and field conditions. The genotypes were evaluated with fifteen molecular markers (SSR and specific primers for translocation wheat-rye). The genotypes were divided into four groups based on disease severity (the greenhouse) and agronomic traits (the field). Chi-square results showed the interactions for these groupings. The correlation between disease severity and agronomic traits indicated that plant resistance is strongly dependent on plant yield. Based on cluster analysis for molecular data (based on simple matching similarity coefficient and UPGMA method), genotypes were separated into resistant and susceptible ones. The correlation between disease severity and amplified loci showed that disease resistance is interactive with xbarc232, xbarc124, and gpw95001 markers. Resistance to take-all disease is probably associated with the interaction of several genes. These results add significant information to our knowledge of the chromosomal location of genes for the take-all disease.

Keywords

Subjects
Afshari, F. 2012. Identification of resistance to Puccinia striiformis f. sp. tritici in some elite wheat lines. Journal of Crop Protection, 1(4): 293-302.
Alam, M. A., Wang, C. and Ji, W. 2013. Chromosomal location and SSR markers of a powdery mildew resistance gene in common wheat line N0308. African journal of Microbiology Research, 7: 477-482.
Arain, S. M., Sial, M. A., Jamali, K. D. and Laghari, K. A. 2018. Grain yield performance, correlation, and luster analysis in elite bread wheat (Triticum aestivum L.) lines. Acta Agrobotanica, 71(4).
Babaei-Zarch, M. J., Fotokian, M. H. and Mahmoodi, S. 2013. Evaluation of genetic diversity of wheat (triticum aestivum l.) genotypes for agronomic traits using multivariate analysis methods. Journal of Crop Breeding, 6:1-14 (In Farsi).
Båga, M. Chodaparambil, S. V., Limin, A. E., Pecar, M., Fowler, D. B. and Chibbar, R. N. 2007. Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Functional & integrative genomics, 7: 53-68.
Bhatta, M., Shamanin, V., Shepelev, S., Baenziger, P.S., Pozherukova, V., Pototskaya, I. and Morgounov, A., 2019. Marker-trait associations for enhancing agronomic performance, disease resistance, and grain quality in synthetic and bread wheat accessions in Western Siberia. Genes, Genomes, Genetics, 9(12): 4209-4222.
Dai, Y., Duan, Y., Liu, H., Chi, D., Cao, W., Xue, A., Gao, Y., Fedak, G. and Chen, J. 2017. Molecular cytogenetic characterization of two Triticum–Secale–Thinopyrum trigeneric hybrids exhibiting superior resistance to Fusarium head blight, leaf rust, and stem rust race Ug99. Frontiers in plant science, 8: 797.
Dashti, H., ShahabalDini Parizi, Z. Saberi Riseh, R. and Gholizadeh-Vazvani, M. 2018. Genetical analysis of resistance to ‘take-all (Gaeumannomyces graminis var. tritici) t-41 isolation in bread wheat using generation means analysis. Journal of Crop Breeding, 12(33): 9-19 (In Farsi).
Deng, Z., Cui, Y., Han, Q., Fang, W., Li, J. and Tian, J. 2017. Discovery of consistent QTLs of wheat spike-related traits under nitrogen treatment at different development stages. Frontiers in Plant Science, 8: 2120
Doyle, J. J. and Doyle, J. L. 1990. Isolation of plant DNA from fresh tissue. Focus, 12(13):39-40.
Draz, I. S., Abou-Elseoud, M. S., Kamara, A. E. M., Alaa-Eldein, O. A.E. and El-Bebany, A. F. 2015. Screening of wheat genotypes for leaf rust resistance along with grain yield. Annals of Agricultural sciences, 60: 29-39.
Fatemi-Fard, S. Z., Masoumiasl, A. and Rezaei, R. 2018. Study of genetic diversity of wheat bacterial blight (Pseudomonas syringae pv. Syringae) using ISSR molecule marker in Iranian native wheat cultivars. Cellular and Molecular Researches (Iranian Journal of Biology), 33(1):53-63.
Gholizadeh-Vazvani, M., Dashti, H., Saberi-Riseh, R. and Bihamta, M. R. 2016. Study of relationship between of vegetative traits and resistance to take-all disease in greenhouse condition. Iranian Journal of Plant Protection, 47(1):11-21 (In Farsi).
Gholizadeh-Vazvani, M., Dashti, H., Saberi-Riseh, R. and Bihamta, M. R. 2015. Comparison between spring and autumn growth types of different wheat (Triticum aestivum L.) genotypes in response to Take-all disease. Iranian Journal of Plant Protection Science, 46: 307-316 (In Farsi).
Gholizadeh-Vazvani, M., Dashti, H., Saberi-Riseh, R. and Bihamta, M. R. 2017. Screening bread wheat germplasm for resistance to take-all disease (Gaeumannomyces graminis var. tritici) in greenhouse conditions. Journal of Agriculture Science and Technology, 19:1173-1184.
Gibson, J. P. and Bishop, S. C. 2005. Use of molecular markers to enhance resistance of livestock to disease: a global approach. Revue Scientifique Et Technique-Office International Des Epizooties, 24: 343.
Gupta, P. K., Rustgi, S. Sharma, S., Singh, R., Kumar, N. and Balyan, H. S. 2003. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Molecular genetics and genomics, 270: 315-323.
Huang, D. H., Lin, Z. S., Xiao, C. H. E. N., Zhang, Z. Y., C. C., Cheng, S. H. and Xin, Z. Y. 2007. Molecular characterization of a Triticum durum-Haynaldia villosa amphiploid and its derivatives for resistance to gaeumannomyces graminis var. tritici. Agricultural Sciences in China, 6: 513-521.
Järve, K., Peusha, H. O., Tsymbalova, J., Tamm, S., Devos, K. M. and Enno, T. M. 2000. Chromosomal location of a Triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat. Genome, 43: 377-381.
Jung, G., Skroch, P. W., Coyne, D. P., Nienhuis, J., Arnaud-Santana, E., Ariyarathne, H. M., Kaeppler, S. M. and Bassett, M. J. 1997. Molecular-marker-based genetic analysis of tepary bean-derived common bacterial blight resistance in different developmental stages of common bean. Journal of the American Society for Horticultural Science, 122: 329-337.
Kidane, Y. G., Hailemariam, B. N., Mengistu, D. K., Fadda, C., Pè, M. E. and Dell'Acqua, M. 2017. Genome-wide association study of Septoria tritici blotch resistance in Ethiopian durum wheat landraces. Frontiers in plant science, 8: 1586.
Kim, Y. K., Friebe, B. and Bockus, W. W. 2003. Resistance to take-all is not expressed in wheat-alien chromosome addition and substitution lines. Plant Health Progress, 4: 28.
Lin, F., Xue, S. L., Zhang, Z. Z., Zhang, C. Q., Kong, Z. X., Yao, G. Q., Tian, D. G., Zhu, H. L., Li, C. J., Cao, Y. and Wei, J. B. 2006. Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419×Wangshuibai population. II: Type I resistance. Theoretical and Applied Genetics, 112: 528-535.
Liu, Z., Sun, Q., Ni, Z., Nevo, E. and Yang, T. 2002. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica, 123: 21-29.
Mamidi, S., Chikara, S., Goos, R. J., Hyten, D. L., Annam, D., S. M., Lee, R. K., Cregan, P. B. and McClean, P. E. 2011. Genome‐wide association analysis identifies candidate genes associated with iron deficiency chlorosis in soybean. The Plant Genome, 4(3).
Mamidi, S., Lee, R. K., Goos, J. R. and McClean, P. E. 2014. Genome-wide association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max). PloS one, 9(9): p.e107469.
Masoudi, H., Sabouri, H., Taliey, F. and Jafarby, J. A. 2017 Genetic diversity and association analysis for morphophenolgic traits and resistance to Powdery mildew using ISSR, IRAP and iPBS markers. Crop Biotechnology, 7: 41-56.
McCartney, C. A., Brûlé-Babel, A. L., Fedak, G., Martin, R. A., McCallum, B. D., Gilbert, J., Hiebert, C. W. and Pozniak, C. J. 2016. Fusarium head blight resistance QTL in the spring wheat cross Kenyon/86ISMN 2137. Frontiers in microbiology, 7: 542.
McMillan, V. E., Canning, G., Moughan, J., White, R. P., Gutteridge, R. J. and Hammond-Kosack, K. E. 2018. Exploring the resilience of wheat crops grown in short rotations through minimising the build-up of an important soil-borne fungal pathogen. Scientific reports, 8: 1-13.
McMillan, V. E., Gutteridge, R. J. and Hammond-Kosack, K. E. 2014. Identifying variation in resistance to the take-all fungus, Gaeumannomyces graminis var. tritici, between different ancestral and modern wheat species. BMC plant biology, 14: 1-12.
Miranda, L. M., Murphy, J. P., Marshall, D. and Leath, S. 2006. Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 113: 1497-1504.
Mishra, S., Singh, B. R., Singh, A., Keswani, C., Naqvi, A. H. and Singh, H. B. 2014. Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One, 9(5): p.e97881.
Nei, M. and Li, W. H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 76(10): 5269-5273.
Nguyen, V. L., Huynh, B. L., Wallwork, H. and Stangoulis, J. 2011. Identification of quantitative trait loci for grain arabinoxylan concentration in bread wheat. Crop Science, 51(3): 1143-1150.
Ownley, B. H., Duffy, B. K. and Weller, D. M. 2003. Identification and manipulation of soil properties to improve the biological control performance of phenazine-producing Pseudomonas fluorescens. Applied and Environmental Microbiology, 69(6): 3333-3343.
Paknia, R., Darvishzadeh, R., Shahriari, F. and Malekzadeh, S. 2018. Association analysis using SSR markers for resistance to Sclerotinia basal stem rot disease in oily sunflower (Helianthus annuus L.) under filed conditions. Modares Journal of Biotechnology, 9(3): 355-367.
Peakall, R. O. D. and Smouse, P. E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6(1): 288-295.
Peltonen-Sainio, P., Kangas, A., Salo, Y. and Jauhiainen, L. 2007. Grain number dominates grain weight in temperate cereal yield determination: Evidence based on 30 years of multi-location trials. Field Crops Research, 100(2-3): 179-188.
Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. and Rafalski, A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular breeding, 2(3): 225-238.
Ramanauskienė, J., Dabkevičius, Z., Tamošiūnas, K. and Petraitienė, E. 2019. The incidence and severity of take-all in winter wheat and Gaeumannomyces graminis soil inoculum levels in Lithuania. Zemdirbyste-Agriculture, 106(1).
Rehman-Arif, M. A., Attaria, F., Shokat, S., Akram, S., Waheed, M. Q., Arif, A. and Börner, A. 2020. Mapping of QTLs associated with yield and yield related traits in durum wheat (Triticum durum Desf.) under irrigated and drought conditions. International Journal of Molecular Sciences, 21(7): 2372.
Röder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., Leroy, P. and Ganal, M. W. 1998. A microsatellite map of wheat. Genetics, 149(4): 2007-2023.
Rohlf, F.J. 1993. Numeric taxonomy and multivariate analysis system. NTSYS-pc.
Sabaghnia, N., Janmohammadi, M. and Segherloo, A.E., 2015, May. Evaluation of some agro-morphological traits diversity in Iranian bread wheat genotypes. In Annales Universitatis Mariae Curie-Sklodowska, sectio C–Biologia, 69 (1): 79.
Saberi-Riseh, R., Dashti, H., Gholizadeh-Vazvani, M. and Dini, A. 2020. changes in the activity of enzymes phenylalanine ammonia-lyase, polyphenol oxidase, and peroxidase in some wheat genotypes against take-all disease. Journal of Agricultural Science and Technology, (Accepted: 2020/07/20).
Sadeghi, L., Alizadeh, A., Safaie, N. and Ghalandar, M. 2010. Identification of Iranian n populations of Gaeumannomyces graminis var. tritici using morphological, molecular and pathological studies. Iranian Journal of Plant Pathology, 45:27-30.
Sadeghi, L., Alizadeh, A., Safaie, N. and Jamali, S. H. 2012. Genetic diversity of gaeumannomyces graminis var. tritici populations using rapd and eric markers. Journal of Plant Pathology and Microbiology, 3: 143.
Sehgal, S. A., Tahir, R. A. and Nawaz, M. 2012. molecular characterization of wheat genotypes using ssr markers. International Journal of Bioautomation, 6: 119-128.
Sheng-sheng, B. A. I., Han-bing, Z. H. A. N. G., Jing, H. A. N., Jian-hui, W. U., Jia-chuang, L. I. and Xing-xia, G. E. N. G., Bo-ya, L., Song-feng, X. I. E., De-jun, H. A. N., Ji-xin, Z. H. A. O. and Qun-hui, Y. A. N. G. 2020. Identification of genetic locus with resistance to take-all in the wheat-Psathyrostachys huashanica Keng introgression line H148. Journal of Integrative Agriculture 19: 2–14.
Silvar, C., Casas, A. M., Igartua, E., Ponce-Molina, L. J., Gracia, M. P., Schweizer, G., Herz, M., Flath, K., Waugh, R., Kopahnke, D. and Ordon, F. 2011. Resistance to powdery mildew in Spanish barley landraces is controlled by different sets of quantitative trait loci. Theoretical and applied genetics, 123: 1019-1028.
Simeone, R., Piarulli, L., Nigro, D., Signorile, M. A., Blanco, E., Mangini, G. and Blanco, A. 2020. Mapping powdery mildew (Blumeria graminis f. sp. tritici) resistance in wild and cultivated tetraploid wheat’s. International Journal of Molecular Sciences, 21: 7910.
Song, Q. J., Shi, J. R., Singh, S., Fickus, E. W., Costa, J. M., Lewis, J., Gill, B. S., Ward, R. and Cregan, P. B. 2005. Development and mapping of microsatellite (SSR) markers in wheat. Theoretical and Applied Genetics, 110(3): 550-560.
Summers, R. W. and Brown, J. K. M. 2013. Constraints on breeding for disease resistance in commercially competitive wheat cultivars. Plant Pathology, 62: 115-121.
Tabibzadeh, N., Karimzadeh, G. and Naghavi, M. R. 2013. Distribution of 1AL.1RS and 1BL. 1RS wheat-rye translocations in Iranian wheat, using PCR based markers and SDS-PAGE. Cereal research communications, 41: 458-467.
Wang, L. Y., Xie, Y. S., Cui, Y. Y., Xu, J., He, W., Chen, H. G. and Guo, J. H. 2015. Conjunctively screening of biocontrol agents (BCAs) against Fusarium root rot and Fusarium head blight caused by Fusarium graminearum. Microbiological Research, 177: 34-42.
Weng YP, Azhaguve RN Devkota JC and Rudd (2007). PCR‐based markers for detection of different sources of 1AL. 1RS and 1BL. 1RS wheat–rye translocations in wheat background. Plant Breeding 126: 482-486.
Xhulaj, D. B. and Gixhari, B. 2020. Analysis of genetic variation in bread wheat by grain yield components. Agriculture & Forestry/Poljoprivredai Sumarstvo, 66.
Xhulaj, D. B., Elezi, F. and Hobdari, V. 2019. Interrelationships among traits and morphological diversity of wheat (Triticum aestivum L.) accessions in base collection of Plant Genetic Resources Institute, Albania. Acta Agriculturae Slovenica, 113: 163-179.
Yediay, F. E., Baloch, F. S., Kilian, B. and Özkan, H. 2010. Testing of rye-specific markers located on 1RS chromosome and distribution of 1AL.RS and 1BL.RS translocations in Turkish wheat (Triticum aestivum L., T. durum Desf.) varieties and landraces. Genetic Resources and Crop Evolution, 57:119-29.
Zhang, J., Yan, H., Xia, M., Han, X., Xie, L., Goodwin, P.H., Quan, X., Sun, R., Wu, C. and Yang, L., 2020. Wheat root transcriptional responses against Gaeumannomyces graminis var. tritici. Phytopathology Research, 2(1):1-14.
Zwart, R. S., Muylle, H., Van Bockstaele, E. and Roldán-Ruiz, I. 2008. Evaluation of genetic diversity of Fusarium head blight resistance in European winter wheat. Theoretical and Applied Genetics, 117: 813.