Variable susceptibility in populations of Tetranychus urticae Koch (Acari: Tetranychidae) to propargite and chlorpyrifos

Volume 10, Issue 1
March 2021
Pages 139-150

Document Type : Original Research

Authors

1 Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

2 Environmental Science and Sustainable Agriculture, University of Sistan and Baluchestan, Zahedan, Iran.

Abstract
The two-spotted spider mite, Tetranychus urticae, is a major pest of crops and ornamental plants worldwide. It is a highly polyphagous pest that has a notorious reputation for its ability to rapidly develop resistance to commonly used pesticides. Thus, in the current study, the contact toxicity of propargite (EC 57%) and chlorpyrifos (EC 40.8%) was investigated against two populations of T. urticae from Iran, Mahallat (MhR) and Karaj (KrS), using a leaf-dip bioassay. Findings showed that the LC50 of propargite against MhR and KrS populations was 5337.90 and 116.81 mg a.i/l, respectively. While the LC50 of the chlorpyrifos against MhR and KrS populations was 2760.83 and 479.25 mg a.i/l, respectively. Based on the median lethal concentrations (LC50), MhR and KrS populations were considered as resistant and susceptible populations to both pesticides, respectively. MhR population was 5.76-fold and 45.70-fold more resistant to chlorpyrifos and propargite than the KrS population, respectively. Insecticide synergists including triphenyl phosphate (TPP), piperonyl butoxide (PBO), and diethyl maleate (DEM)) revealed the contribution of esterases, glutathione S-transferases (GST), and cytochrome P450 monooxygenases (P450s) to resistance. Nonetheless, the involvement of esterases and P450s was more evident against chlorpyrifos and propargite, respectively. The activity of P450s, GSTs, esterases, and acetylcholinesterase (AChE) was measured in susceptible and resistant populations. All enzymes showed significantly higher activity in the resistant population than in the susceptible one. Additionally, zymogram analysis of esterase showed two distinct bands in the MhR population, whereas the stronger band was absent in KrS population. These results indicate that metabolic pathways are associated with chlorpyrifos and propargite resistance in the MhR population.

Keywords

Abbott W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265-267.
Ay R. 2005. Determination of susceptibility and resistance of some greenhouse populations of Tetranychus urticae Koch to chlorpyrifos (Dursban 4) by the petri dish–Potter tower method. Journal of Pest Science, 78, 139–143.
Ay R., and Yorulmaz, S. 2010 Inheritance and detoxification enzyme levels in Tetranychus urticae Koch (Acari: Tetranychidae) strain selected with chlorpyrifos. Journal of Pest Science, 83, 85–93.
Ay R., Kara F.E. 2011. Toxicity, inheritance of fenpyroximate resistance, and detoxification-enzyme levels in a laboratory-selected fenpyroximate-resistant population of Tetranychus urticae Koch (Acari: Tetranychidae). Crop Protection, 30(6), 605–610.
Bajda S., Riga Wybouw M., Papadaki N., Ouranou S., Fotoukkiaii E., Vontas S.M.J. and Van Leeuwen T. 2018. Fitness costs of key point mutations that underlie acaricide target‐site resistance in the two‐spotted spider mite Tetranychus urticae. Evolutionary Applications, 11(9), 1540-1553.
Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.
Brogdon W.G., McAllister J.C., Vulule J. 1997. Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. Journal of the American Mosquito Control Association, 13(3), 233–237.
Brown S., Kerns D.L., Gore J., Lorenz G., Stewart S. 2017. Susceptibility of two-spotted spider mites (Tetranychus urticae) to abamectin in Midsouth cotton. Crop Protection, 98, 179-183.
Chen J.C., Gong Y.J., Shi P., Wang Z.H., Cao L.J., Wang P., Wei S.J. 2019. Field-evolved resistance and cross-resistance of the two-spotted spider mite, Tetranychus urticae, to bifenazate, cyenopyrafen and SYP-9625. Experimental and Applied Acarology, 1-10.
Davis, B.J. 1964. Disc Electrophoresis—II Method and Application to Human Serum Proteins. Annals of the New York Academy of Sciences, 121, 404–427.
Dehkordi A.S., Abadi Y.S., Nasirian H., Hazratian T., Gorouhi M.A., Yousefi S., Paksa A. 2017. Synergists action of piperonyl butoxide and S, S, S-tributyl phosphorotrithioate on toxicity of carbamate insecticides against Blattella germanica. Asian Pacific journal of tropical medicine, 10(10), 981-986.
Devonshire A.L. 1977. The properties of a carboxylesterase from the peach-potato aphid, Myzus persicae (Sulz.), and its role in conferring insecticide resistance. The Biochemical Journal, 167, 675–683.
Ellman G.L., Courtney K.D., Andres V., Feather-Stone R.M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.
Farahani S., Bandani A., Eslami S. 2018. Comparison of susceptibility of two Iranian populations of Tetranychus urticae Koch (Acari: Tetranychidae) to spirodiclofen. Persian Journal of Acarology, 7(3), 279-287.
Goodwin S., Herron G., Gough N., Welliiam T., Rophail J., Parker R. 1995. Relationship Between Insecticide-Acaricide Resistance and Field Control in Tetranychus urticae (Acari: Tetranychidae) Infesting Roses. Journal of Economic Entomology, 88, 1106-1112.
Grbić M., Van Leeuwen T., Clark R.M., Rombauts S., Rouzé P., Grbić V., Osborne E.J., Dermauw W., Ngoc P.C.T., Ortego F. and Hernández-Crespo P. 2011. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479, 487-492.
Habig W.H., Pabst M.J., Jakoby W.B. 1974. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130–7139.
Herron G.A., Rophali J. 1998. Tebufenpyrad (Pyranica®) resistance detected in two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) from apples in Western Australia. Experimental and Applied Acarology, 22, 633–641.
Herron G.A., Edge V.E., Wilson L.J., Rophail J. 1998. Organophosphate resistance in spider mites (Acari: Tetranychidae) from cotton in Australia. Experimental and Applied Acarology, 22: 17-30.
Keena M.A., Granett G. 1990. Genetic analysis of propargite resistance in Pacific spider mites and two-spotted spider mites (Acari: Tetranychidae). Journal of Economic Entomology, 83, 655-661.
Khalighi M., Dermauw W., Wybouw N., Bajda S., Osakabe M., Tirry L., Van Leeuwen T. 2015. Molecular analysis of cyenopyrafen resistance in the two-spotted spider mite Tetranychus urticae. Pest Management Science, 32.
Kumral N.A, Susurluk H., Gencer N.S., Gürkan M.O. 2009. Resistance to chlorpyrifos and lambda-cyhalothrin along with detoxifying enzyme activities in field-collected female populations of European red mite. Phytoparasitica 37, 7-15.
Kwon D.H., Choi J.Y., Je Y.H., Lee S.H. 2012. The overexpression of acetylcholinesterase compensates for the reduced catalytic activity caused by resistance-conferring mutations in Tetranychus urticae. Insect biochemistry and molecular biology, 42, 212–219.
Kwon D.H., Clark J.M., Lee S.H. 2010. Extensive gene duplication of acetylcholinesterase associated with organophosphate resistance in the two-spotted spider mite. Insect molecular biology, 19, 195–204.
LeOra Software 2007. LeOra Software Company. Available from: <http://www.leorasoftware.com>
Luo Y.J., Yang Z.G., Xie D.Y., Ding W.D., A.S., Ni J., Li S.X 2014. Molecular cloning and expression of glutathione S-transferases involved in Propargite resistance of the carmine spider mite, Tetranychus cinnabarinus (Boisduval). Pesticide Biochemistry and Physiology, 114, 44–51.
Morin S., Williamson M.S., Goodson S.J., Brown J.K., Tabashnik B.E., Dennehy T.J. 2002. Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect Biochemistry and Molecular Biology, 32(12), 1781–1791.
Nauen R., Stumpf N., Elbert A., Zebitz C.P.W., Kraus W. 2001. Acaricide toxicity and resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pest Management Science, 57, 253-261.
Opit G.P., Nechols J.R., Margolies D.C. 2004. Biological control of two-spotted spider mites, Tetranychus urticae Koch (Acari: Tetranychidae), using Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseidae) on ivy geranium: Assessment of predator release ratios. Biological Control, 29(3), 445–452.
Piraneo T.G., Bull J., Morales M.A., Lavine L.C., Walsh D.B., Zhu F. 2015. Molecular mechanisms of Tetranychus urticae chemical adaptation in hop fields. Scientific Reports, 5, 17090.
Scott J.G. 1990. Investigating mechanisms of insecticide resistance: methods, strategies, and pitfalls. In Pesticide resistance in arthropods (pp. 39-57). Springer, Boston, MA.
Snoeck S., Greenhalgh R., Tirry L., Clark R.M., Van Leeuwen T., Dermauw W. 2017. The effect of insecticide synergist treatment on genome-wide gene expression in a polyphagous pest. Scientific reports, 7(1), 13440.
Sökeli E., Ay R., Karaca S. 2007. Determination of the resistance level of two-spotted spider mite (Tetranychus urticae Koch) populations in apple orchards in Isparta Province against some pesticides. Tarim Bilimleri Dergisi, 13, 326-330.
Van Asperen K., 1962. A study of housefly esterases by means of a sensitive colorimetric method. Journal of Insect Physiology, 8(4), 401–416.
Van Leeuwen T., Stillatus V., Tirry L. 2004. Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant population of two-spotted spider mite (Acari: Tetranychidae). Experimental and Applied Acarology, 32(4), 249–261.
Van Leeuwen T., Tirry L., Yamamoto A., Nauen R., Dermauw W. 2015. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pesticide Biochemistry and Physiology, 121, 12–21.
Van Leeuwen T., Vontas J., Tsagkarakou A., Tirry L. 2009. Mechanisms of Acaricide Resistance in the Two-Spotted Spider Mite Tetranychus urticae. In I. Ishaaya and A. R. Horowitz (Eds.), Biorational control of arthropod pests (pp. 347–393). Springer Netherlands.
Van Leeuwen T., Vontas J., Tsagkarakou A., Dermauw W., Tirry L. 2010. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochemistry and Molecular Biology, 40, 563-572.
Vassiliou V.A., Kitsis P. 2013. Acaricide Resistance in Tetranychus urticae (Acari: Tetranychidae) Populations from Cyprus. Journal of Economic Entomology, 106, 1848-1854.
Yang X., Zhu Y.K., Buschman L., Margolies D. 2001. Comparative susceptibility and possible detoxification mechanisms for selected miticides in Banks grass mite and two-spotted spider mite (Acari: Tetranychidae). Experimental and Applied Acarology, 25: 293-299.
Zhang Z.Q. 2003. Mites of Greenhouses Identification, Biology and Control. Cabi. UK. 244pp.