Efficacy of mixture of emamectin benzoate with some insecticides on the mortality and esterase activity of fourth instar larvae of Tuta absoluta (Lepidotera: Gelechiidae)

Volume 9, Issue 4
December 2020
Pages 699-709

Document Type : Original Research

Authors

1 Departmant of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.

2 Iranian Research Institute of Plant Protection, Tehran, Iran.

3 Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

Abstract


The tomato leafminer, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) is one of the most damaging tomato pests in the world and in Iran. The toxicity of acetamiprid, eforia (thiamethoxam + lambda-cyhalothrin) and hexaflumuron alone and in mixture with emamectin benzoate was studied against 4th-instars of Tuta absoluta (Meyrick) at 25 ± 2 °C, 65 ± 5% RH and 16:8 (L:D) h. Moreover, the mixtures of examined insecticides with emamectin benzoate at LC15:LC15 ratio were assessed on the general esterase enzyme activity and total protein content of 4th-instars. The highest toxicity was found for emamectin benzoate after 72 h (LC50 = 0.48 mg a.i./l), followed by acetamiprid (LC50 = 46.94 mg a.i./l), eforia (LC50 = 156.24 mg a.i/l) and hexaflumuron (LC50 = 670.32 mg a.i/l). Mixing emamectin benzoate with acetamiprid at the ratio of LC50:LC50 and LC25:LC25 resulted in synergistic impacts while mix of two other ratios of the same pesticides represented additive influences. The mixture of emamectin benzoate with either hexaflumuron or eforia at all ratios created antagonistic and additive effects, respectively. Mixing emamectin benzoate with either acetamiprid or eforia increased larval esterase activity, however, there was no significant difference between emamectin benzoate in mixture with hexaflumuron and using it alone. Mixing emamectin benzoate with the examined insecticides considerably decreased the larval total protein content. Based on the findings of this work, the mixtures of eforia and acetamiprid with emamectin benzoate represented greater negative effects against 4th-instars compared to emamectin benzoate alone and the control.

Keywords

Subjects
Abbas, N., Crickmore, N. and Shad, S. A. 2015. Efficacy of insecticide mixtures against a resistant strain of housefly (Diptera: Muscidae) collected from a poultry farm. International Journal of Tropical Insect Science, 35: 48-53.
Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265–267.
Abdel-Mageed, A. E. M. and Shalaby, Sh. E. M. 2011. Toxicity and biochemical impacts of some new insecticide mixtures on cotton leafworm Spodoptera littoralis (Boisd.). Plant Protection Science, 47(4): 166–175.
All, J. N., Ali, M., Hornyak, E. P. and Weaver, J. B. 1977. Joint action of two pyrethroids with methyl-parathion, methomyl, and chlorpyrifos on Heliothis zea and H. virescens in the laboratory and in cotton and sweetcorn. Journal of Economic Entomology, 70: 813–817.
Asher, K. R. S., Eliyahu, M., Ishaaya, I., Zur, M. and Ben-Moshe, E. 1986. Synergism of pyrethroid–organophosphorus insecticide mixtures in insects and their toxicity against Spodoptera littoralis larvae. Phytoparasitica, 14: 101–110.
Assar, A. A., Abo El-Mahasen, M. M., Dahi, H. F. and Amin, H. S. 2016. Biochemical effects of some insect growth regulators and bioinsecticides against cotton leafworm, Spodoptera littoralis (Boisd.)(Lepidoptera: Noctuidae). Journal of Bioscience and Applied Research, 2(8): 587-594.
Badawy, M. E. I., Nasr, H. M. and Rabea, E. I. 2015. Toxicity and biochemical changes in the honey bee Apis mellifera exposed to four insecticides under laboratory conditions. Apidologie, 46: 177–193.
Belzunces, L., Tchamitchian, S. and Brunet, J. L. 2012. Neural effects of insecticides in the honey bee. Apidologie, 43: 348–370.
Bielza, P., Fernández, E., Graválos, C. and Albellán, J. 2009. Carbamates synergize the toxicity of acrinathrin in resistant western flower thrips (Thysanoptera: Thripidae). Journal of Economic Entomology, 102: 393–397.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72: 248-254.
Bryne, F. J. and Devonshire, A. L. 1991. In vivo inhibition of esterase and acetylcholinesterase activities by profenofos treatment in the tobacco whitefly Bemisia tabaci (Genn) implications for routine biochemical monitoring of these enzymes. Pesticide Biochemistry and Physiology, 40: 198–204.
Campos, M. R., Rodrigues, A. R. S., Silva, W. M., Silva, T. B. M., Silva, V. R. F., Guedes, R. N. C. and Siqueira, H. A. A. 2014. Spinosad and the tomato borer Tuta absoluta: A bioinsecticide, an invasive pest threat, and high insecticide resistance. PLOS ONE, 9: e103235.
Corbett, J. R. 1974. The Biochemical Mode of Action of Pesticides. New York: Academic Press.
Desneux, N., Wajnberg, E., Wyskhuys, K.A.G., Burgio, G., Arpaia, S., NarváezVazquez, C.A. and et al. 2010. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science, 83: 197-215.
Duchovskienė, L. 2016. The efficancy of different insecticides for control of Lepidopteran pests on cabbage in Lithuania. Sodininkystė ir Daržininkystė, 35(3/4): 65-75.
EPPO, 2005. Data sheets on quarantine pests: Tuta absoluta: 2005 OEPP/EPPO, European and Mediterranean Plant Protection Organization, Bulletin OEPP/EPPO, 35: 434-435.
Gacemi, A. and Guenaoui, Y. 2012. Efficacy of emamectin benzoate on Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) infesting a protected tomato crop in Algeria. Academic Journal of Entomology, 5 (1): 37-40.
Galdino, T. V. S., Picanço, M. C., Morais, E. G. F., Silva, N. R., Silva, G. A. R. and Lopes, M. C. 2011. Bioassay method for toxicity studies of insecticide formulations to Tuta absoluta (MEYRICK, 1917). Science and Agrotechnology, 35(5): 869-877.
Gamil, W. E., Mariy, F. M., Youssef, L. A. and Abdel Halim, S. M. 2011. Effect of indoxacarb on some biological and biochemical aspects of Spodoptera littoralis (Boisd.) larvae. Annals of Agricultural Science, 56(2): 121–126.
Ghoneim, Y. F., Singab, M., Abou-Yousef, H. M. and Abd-El-Hai, N. S. 2012. Efficacy of certain insecticides and their mixtures with the tested IGRs against a field strain of the cotton leaf worm, Spodoptera littoralis (Boisd.) under laboratory conditions. Australian Journal of Basic and Applied Sciences, 6(6): 300-304.
Guedes, R. N. C. and Siqueira, H. A. A. 2012. The tomato borer Tuta absoluta: insecticide resistance and control failure. CAB Reviews, 7(055):1-7.
Hemingway, J. and Karunatne, S. H. P. 1998. Mosquito carboxylesterases: A review of the molecularbiology and biochemistry of a major insecticide resistance mechanism. Medical and Veterinary Entomology, 12: 1-12.
Ishaaya, I. 2001. Biochemical processes related to insecticide action: An overview. In: Ishaaya, I. , (Ed.), Biochemical sites of insecticides action and resistance. Berlin. Springer. pp. 1–16.
Ishaaya, I., Mendelson, Z., Ascher, K. R. S. and Casida, J. E. 1985. Mixtures of synthetic pyrethroids and organophosphorus compounds for controlling the whitefly, Bemisia tabaci, Phytoparasitica, 13: 76–77.
Khan, H. A. A., Akram, W., Shad, S. A. and Lee, J. J. 2013. Insecticide mixtures could enhance the toxicity of insecticides in a resistant dairy population of Musca domestica L. PLOS ONE, 8(4): e60929.
Koppenhofer, A. M. and Kaya, H. K. 1996. Additive and synergistic interaction between entomopathogenic nematodes and Bacillus thuringiensis for scarab grub control. Biological Control, 8: 131–137.
Liguori, R., Cestari, P., Serrati, L. and Fusarini, L. 2008. Emamectina benzoate (AFFIRM®): innovative insetticida par la difesa contro I lepidopteri fitofagi. Atti Giornate Fitopatologiche, 23-28.
López, J. D., Latheef, M. A. and Hoffman, W. C. 2010. Effect of emamectin benzoate on mortality, proboscis extension, gustation and reproduction of the corn earworm Helicoverpa zea. Journal of Insect Science, 10(89). available online: insectscience.org/10.89.
Mahmoud, M. M., Soliman, A. S. H. Abdel-Moniem, B. and Abdel-Raheem, M. A. 2013. Impact of some insecticides and their mixtures on the population of tomato borers, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in tomato crop at Upper Egypt. Archives of Phytopathology and Plant Protection. http://dx.doi.org/10.1080/03235408.2013.857226
Mahmoud, M. M., Soliman, A. S. H., Abdel-Moniem, B. and Abdel-Raheem, M. A. 2014. Effect of certain low toxicity insecticides against tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae) with reference to their residues in harvested tomato fruits. International Journal of Agricultural Research, 9(4 ): 210-218.
Manal, A-R. and Abdel-Mageed, A-R. 2018. Toxicity of traditional, novel and bio-insecticides and their mixtures against house fly Musca domestica in relation to some biochemical activities. Research Journal of Environmental Toxicology, 12 (1): 1-10.
Martin, T, Ochou, O. G., Vaissayre, M. and Fournier, D., 2003. Organophosphorus insecticides synergise pyrethroids in the resistant strain of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) from West Africa. Journal of Economic Entomology, 92: 468–474.
Metayi, M. H. A., Ibrahiem, M. A. M. and El-Deeb, D. A. 2015. Toxicity and Some Biological Effects of Emamectin Benzoate, Novaluron and Diflubenzuron against Cotton Leafworm. Alexandria science exchange journal, 36(4): 350-357.
Nath, B. S., Suresh, A., Varma, B. M. and Kumar, R. P. S. 1997. Bombyx mori (Lepidoptera: Bombycidae) in response to organophosphorus insecticides toxicity. Ecotoxicology and Environmental Safety, 36 (2): 169–173.
Nozad-Bonab, Z., Hejazi, M. J., Iranipour, Sh. and Arzanlou, M. 2017. Lethal and sublethal effects of some chemical and biological insecticides on Tuta absoluta (Lepidoptera: Gelechiidae) eggs and neonates. Journal of Economic Entomology, 1–7.
Reyes, M., Rocha, K., Alarcón, L., Siegwart , M. and Sauphanor, B. 2012. Metabolic mechanisms involved in the resistance of field populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to spinosad. Pesticide Biochemistry and Physiology, 102: 45-50.
Reyes, M., Franck, P., Charmillot, P-J., Ioriatti, C., Olivares, J., Pasqualini, E. and Sauphanor, B. 2007. Diversity of insecticide resistance mechanisms and spectrum in European populations of the codling moth, Cydia pomonella. Pest Management Science, 63: 890–902.
Roditakis, E., Skarmoutsou, C. and Staurakaki, M. 2013. Toxicity of insecticides to populations of tomato borer Tuta absoluta (Meyrick) from Greece. Pest Management Science, 69: 834-840.
Saddiq, B., Ejaz, M., Shad, S. A. and Aslam, M. 2017. Assessing the combined toxicity of conventional and newer insecticides on the cotton mealybug Phenacoccus solenopsis. Ecotoxicology. 26: 1240–1249.
Siqueira, H. A. A., Guedes, R. N. C. and Picanco, M. C. 2000. Cartap resistance and synergism in populations of Tuta absoluta (Lep., Gelechiidae). Journal of Applied Entomology, 124: 233–238.
Siqueira, H. A. A., Guedes, R. N. C., Fragoso, D. B. and Magalhaes, L. C. 2001. Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). International Journal of Pest Management, 47: 247–251.
Sun, Y. P. 1950. Toxicity index-An improved method of comparing the relative toxicity of insecticides. Journal of Economic Entomology, 43: 45–53.
Temerak, S. A. 2011. The status of Tuta absoluta in Egypt. EPPO/IOPC/FAO/NEPP Joint, International Symposium on management of Tuta absoluta (tomato borer) Conference, Agadri, Morocco.
Torres, J. B. Faria, C., Evangelista, W. S. J. and Pratissoli, D. 2001. Within-plantdistribution of the leaf miner Tuta absoluta (Meyrick) immatures in processing tomatoes, with notes on plant phenology: International Journal of Pest Management, 47(3): 173-178.
van Asperen, K. 1962. Study of housefly esterases by means of sensitive colorimetric method. Journal of Insect Physiology, 8: 401-416.
Vanhaelen, N., Haubruge, E., Lognay, G. and Francis, F. 2001. Housefly glutathione S-transferase and effect of Brassicaceae secondary metabolites. Pesticide Biochemistry and Physiology, 71: 170-177.
Wafaa, A. AL-Kh. 2011. Field efficacy of some neonicotinoid Insecticides on whitefly Bemicia tabaci (Homoptera: Aleyrodidae) and its natural enemies in cucumber and tomato plants in Al-qassim region, KSA. Journal of Entomology, 8 (5): 429-439.
Wakil, W., Ashfaq, M. and Ghazanfar, M. U. 2009. Integrated management of Helicoverpa armigera in chickpea in rainfed areas of Punjab, Pakistan. Phytoparasitica. 37: 415–420.
Wilde, J., Fraczek, R. J., Siudaa, M., Bak, B., Hatjina, F. and Miszczak, A. 2016. The influence of sublethal doses of imidacloprid on protein content and proteolytic activity in honey bees (Apis mellifera L.). Journal of Apicultural Research, 55(2): 212–220.
Wing, K. D., Sacher, M., Kagaya, Y., Tsurubuchi, Y., Mulderig, L., Connair, M. and Schnee, M. 2000. Bioactivation and mode of action of the oxadiazine indoxacarb in insects. Crop Protection, 19: 537–545.
Wolfenbarger, D. A. and Cantu, E. 1975. Enhanced toxicity of carbaryl when combined with synergists against larvae of the bollworm, Heliothis zea and the tobacco budworm, Heliothis virescens. Florida Entomologist, 58: 103-104.
Yankova, V. and Ganeva, D. 2013. Possibilities for control of tomato leaf miner Tuta absoluta (Meyrick) by application of insecticides in tomato greenhouse growing. Bulgarian Journal of Agricultural Science, 19 (4): 728-731.
Zibaee, I., Bandani, A. R. and Sabahi, G. H. 2016. The expression profile of detoxifying enzyme of tomato leaf miner, Tuta absoluta Meyrik (Lepidoptera: Gelechiidae) to chlorpyrifos. Arthropods, 5(2): 77-86.
Zhu, Y. C., Yao, J., Adamczyk, J. and Luttrell, R. 2017. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera). PLOS ONE, 12(5): e0176837.