# Incidence of Cereal Cyst Nematodes (*Heterodera avenae* type B and *H. filipjevi*) in southwestern Iran

Ali Reza Ahmadi<sup>1\*</sup> and Zahra Tanha Maafi<sup>2</sup>

1. Agricultural and Natural Resources Research Centre of Khuzestan, Ahvaz 61335-3341, Iran.

2. Iranian Research Institute of Plant Protection, Tehran 19395-1454, Iran.

**Abstract**: A survey of cereal fields of Khuzestan province during 2008-2011 revealed that cereal cyst nematodes (CCNs) are widely distributed in this region. The CCNs were present in 37 and 35% of the 200 samples collected from wheat and barley fields respectively. The species were identified as *Heterodera avenae* type B and *H. filipjevi* the morphological and morphometric identifications of which were confirmed by rRNA-ITS RFLP. Population density of CCNs ranged from 2 to 103 cysts (mean 18)/100 g of dried soil with an average of 395 (0-3400) J2 and eggs in wheat samples. Whilst the number of cysts in barley samples were counted 3-71 cysts (mean 11) /100 g soil, the J2 and eggs averaged 166 (0-900). The lowest and the highest rates of infestation (8 and 83%) were observed in the regions of Ahvaz and Behbahan respectively. The number of J2 and eggs of CCNs in some regions were greater than the damage threshold level considered for CCNs and it is likely they could cause economic yield loss in these regions.

Keywords: Cereal cyst nematodes, distribution, Iran, Khuzestan.

#### Introduction

Cereals are the most important food source in the world and 58 percent of the annual cultivation has been allocated to wheat, corn and rice. By the year 2030 the world population will reach about 8 billion people and grain consumption will increase (Fischer *et al.*, 2009). Wheat is cultivated in all parts of Iran over an area of 7 million ha with an annual production of 15 million tones, making it the 12th wheat producer country in the world during 2010-2011 (Anon, 2012). Khuzestan province is located in the southwest of Iran, bordering the Persian Gulf and covering an area of 64,000 km<sup>2</sup>. The province enjoys long and warm summers and short mild winters. The average temperature is 31 °C in summer and 15

°C in winter with average annual precipitation of 266 mm. The area under wheat cultivation is 0.68 million ha with total production of 1.23 million tones, contributing 9% of annual national production in 2009-2010 (Anon, 2011). In Khuzestan province, spring wheat is planted in early November and harvested in mid to late May. The cereal cyst nematodes (CCNs) are considereded as one of the major disease agents of cereals throughout the world. The Heterodera avenae group consists of 12 valid and several undescribed species that infect cereals and grasses. The main CCNs attacking cereals are H. Wollenweber, 1924, *H*. avenae filipjevi (Madzhidov) Steler, 1984 and H. latipons Franklin, 1968 (Rivoal and Cook, 1993). Heterodera avenae has been reported in Europe (Rivoal and Cook, 1993) Austrlia (Brown, 1984) India (Khan et al., 1990) North America (Miller, 1986) and in several countries of North Africa and West Asia (Sikora, 1988; Al-Yahya et al., 1998). H. filipjevi occurs in Iran (Sturhan, 1996) Turkey



Handling Editor: Dr. Vahe Minassian

<sup>\*</sup> **Corresponding author**, e-mail: alirahmadi2000@gmail.com Received: 6 June 2013, Accepted: 9 October 2013

(Rumpenhorst et al., 1996), and in several European countries (Subbotin et al., 1996; Bekal et al., 1997; Rivoal et al., 2003; subbotin et al.,2003; Holgado et al., 2004). H. latipons has been detected in the Mediterranean region (Franklin, 1969; Tacconi, 1976; Romero, 1980; Sikora and Oostendorp, 1986; Philis, 1988; Greco, 1994), Southern Russia, Ukraine, Central Asian Republics (Subbotin et al., 2003), Iran (Talachian et al., 1976), Europe (Stoyanov, 1982; Sabova et al., 1988) and Canada (Sewell, 1973). H. avenae, H. filipjevi, H. hordecalis and H. latipons have been reported from cereal fields and grasslands in Iran (Tanha Maafi et al., 2007). The two first species are the most dominant cyst nematodes in cereal fields, H. avenae was found in wheat fields in only one region in the west of the country. Heterodera hordecalis was recovered from a few wheat fields and around grasses in western Iran (Tanha Maafi et al., 2007, 2009).

A survey of the CCNs in Syria and Turkey showed that 69.9 and 80% of cereal fields respectively were infested to H. avenae. H. filipjevi and H. latipons in Syria and Turkey (Abidou et al., 2005). According to a survey on CCNs in the Slovak republic during 2003-2004, H. avenae was detected in 56.4% of 188 soil samples, at an incidence of 2-81 cysts in 100 g soil (Renco, 2005). In Iran during a survey on CCNs of Markazy province with 88 root and soil samples of wheat and barley it was shown that 40 % of the sampled fields were infested with H. filipjevi and H. latipons at population density of 20-40 cysts/300 g soil (Hajihasani et al., 2008). The frequency of the CCNs was determined from the relationship between the numbers of samples in which the CCNs were observed divided by the total number of sample taken from that area, multiplied by 100 to express as a percentage (Sawadogo et al., 2009). The population density of the CCNs was expressed as the population of cyst, eggs and second stage juveniles in a ginven volume of soil (100 gram of dried soil) (Norton, 1978).

Yield losses due to *H. avenae* were estimated in Australia 20-40 percent on wheat with population density of 2-16 eggs and juveniles/g of soil (Meagher and Brown, 1974);

J. Crop Prot.

in Tunisia it was 26-96 percent for 10-45 eggs and juveniles/g of soil (Namouchi- Kachouri *et al.*, 2009) and 40-92%, 17-77% on wheat and barley with population densities of 15-40 and 16-34 eggs and juveniles/g of soil respectively in Saudi Arabia (Ibrahim *et al.*, 1999).

Prior to this research there was not enough information on the status of the CCNs in cereal fields of Khuzestan province. The aim of this study was to determine the occurrence, distribution and population density of CCNs in wheat and barley fields of Khuzestan province, Iran.

#### **Materials and Methods**

#### Soil sampling and nematode extraction

The survey was performed in the cereal growing areas in Khuzestan province of Iran for 3 years (2008-2011). One hundred and sixty nine wheat and 31 barley fields were inspected and sampled in 22 regions during the grain filling period to harvest time (from mid-February to late May). About two kilograms of soil were collected from each field at the depth of 30 cm which consisted of 10 subsamples taken in a zigzag pattern across the field. 200 g of soil subsamples were dried at room temperature, the cysts were extracted from 100 g of soil by Fenwick can method (Fenwick, 1940). The number of cyst was counted in each sample and the eggs and second stage juveniles inside the cysts were released by crushing the cysts in a glass crusher. The root tissues of 10 wheat and barley plants from each sample were examined under stereomicroscope for observing mature females and disease symptoms.

## Species identification and population density determination

Nematode population density of CCNs including number of cysts, eggs and second stage juveniles inside the cyst was determined in all of the collected samples (Abido *et al.*, 2005). The population densities of CCNs were evaluated as: zero, for no infestation; low, for less than 200; medium, 201 to 500; high, 501 to 1000 and very high for more than 1001 eggs and juveniles / 100 g soil. The nematode population density index in different regions of the province was estimated by

Downloaded from jcp.modares.ac.ir on 2025-05-21 ]

the authors. It is based on various references of CCNs crop loss (Meagher and Brown, 1974; Ibrahim et al., 1999; Hajihasani et al., 2010). Distribution maps of CCNs were plotted using ArcGIS 9.3 software. To identify the species of nematodes, vulval cones of several cysts were mounted in glycerin jelly. Second stage juveniles from each cyst were separately fixed in TAF, transferred to glycerin and permanent slides were made (De Grisse, 1969). The species were morphological identified based on and morphometric features (Wouts and Baldwin, 1998; Handoo, 2002) and molecular characters (Subbotin et al., 2000). For DNA extraction, one cyst from each species was crushed in 8 µl double distilled water, then transferred to a 0.2 µl micro tube containing 12 µl worm lysis buffer (500 mM KCL, 100 mM Tris-HCL pH 8, 15 mM MgCl<sub>2</sub>, 10 mM Dithioteritol, 4.5% Tween 20) and homogenised with a micro-homogeniser. The ITS rRNA gene was amplified with the forward TW 81 and reverse AB28 primers (Joyce et al., 1994), the PCR products were purified using the QIAquick Gel Extraction Kit (Qiagen) according to the manufacturer's instruction. Restriction Fragment Length Polymorphism (RFLP) of amplified ITS product was carried out for H. avenae and H. filipievi. Three to six ul of PCR product was digested by three restriction enzymes according to the manufacture's protocol. The digested DNA was run on a 1.5% TAE buffered agarose gel, stained with ethidium bromide, visualised on gel documentation and photographed.

#### **Results and Discussion**

#### Field infestation and distribution maps

CCNs occurred in 47 (32%) and 13 (54%) irrigated and rain-fed wheat fields respectively (Table 1), the percentage of infestation with CCN in irrigated and rain-fed barley fields were 9 (50%) and 6 (67%) respectively in Khuzestan province during 2008-2011 (Table 2). The results showed that out of 200 soil and root samples, 75 samples (37.5%) were infested with an average population of 280 eggs and juveniles per 100 g of soil. CCNs were widely spread in important cereal growing areas in the province i.e. Ahvaz, Andika, Andimeshk, Baghmalek, Behbahan, Dezful, Gotvand, Haftgel, Hendijan, Hoveize, Izeh, Lali, Masjed Soleiman, Omidiyeh, Ramhormoz, Ramshir, Shadegan, Shushtar and Susa. The lowest (8%) and the highest (83%) incidences were found in Ahvaz and Behbahan respectively whereas infestation was not found in some areas i.e. Dasht-e-Azadeghan, Korramshar and Mahshar.

Our results showed that 37.5% of the surveyed fields were infested with CCNs that was in agreement with our previous report (Ahmadi and Tanha Maafi, 2009). Disease incidence in our study was slightly more than that reported from other areas of the country (34%) (Ahmadi and Tanha Maafi, 2008). H. filipjevi is the dominant species of CCNs in most cereal growing areas (Tanha Maafi et al., 2010) whereas H. avenae was confined to the west and southwest of Iran (Tanha Maafi et al., 2012; Tanha Maafi et al., 2010). Disease incidence on rain-fed wheat and barley fields was greater compared to irrigated wheat and barley fields (59 and 67 versus 32 and 50 percent respectively). CCNs have more devastating impact on rain-fed crops than irrigated crops because drought stress greatly reduces yield (Smiley et al., 2005). Currently, the use of wheat and barley varieties resistant or tolerant to the nematodes is considered as one of the most appropriate management strategies for controlling the CCNs, and is widely used in some countries such as Australia, England, Denmark, Sweden and France (Rivoal and Nicol, 2009). Although in our research the CCNs were observed in different wheat cultivars (Chamran, Virinak, Yavarus and Atila), local barley cultivars and weeds (Lolium prenne, Hordeum spontaneum and Avena ludovicians) under field conditions, it would be helpful to examine reaction of a broader range of bread and durum wheat cultivars and weeds to the CCNs under controlled conditions.

The average numbers of cysts, eggs and juveniles per 100 gram of soil in wheat fields was higher than in barley fields (18 and 395 versus 11 and 166 cysts, eggs and juveniles respectively). The results are in agreement with the study of Andersson (1982), who showed that spring wheat was a more suitable host for *H. avenae* than spring barley.

|                    | Number of surveyed |          |           |          | Number of<br>*cysts/100 g soil) |
|--------------------|--------------------|----------|-----------|----------|---------------------------------|
| District           | fields             |          | samples   |          |                                 |
|                    | U                  | Rain-fed | Irrigated | Rain-fed |                                 |
| Ahvaz              | 12                 | 0        | 1         | 0        | 30                              |
| Andika             | 0                  | 2        | 0         | 1        | 38                              |
| Andimeshk          | 7                  | 0        | 2         | 0        | 4                               |
| Baghmalek          | 1                  | 4        | 0         | 0        | 0                               |
| Behbahan           | 12                 | 0        | 10        | 0        | 16 (3-52)                       |
| Dasht-e- Azadeghan | 19                 | 0        | 0         | 0        | 0                               |
| Dezful             | 9                  | 1        | 4         | 1        | 27 (2-99)                       |
| Gotvand            | 8                  | 0        | 3         | 0        | 6 (4-9)                         |
| Haftgel            | 0                  | 3        | 0         | 1        | 23                              |
| Hendijan           | 4                  | 0        | 2         | 0        | 15 (7-23)                       |
| Hoveizeh           | 3                  | 0        | 1         | 0        | 25                              |
| Izeh               | 0                  | 5        | 0         | 3        | 17 (14-23)                      |
| Korramshar         | 5                  | 0        | 0         | 0        | 0                               |
| Lali               | 0                  | 2        | 0         | 2        | 44 (32-56)                      |
| Mah Shar           | 5                  | 0        | 0         | 0        | 0                               |
| Masjed Soleiman    | 0                  | 2        | 0         | 2        | 57 (31-103)                     |
| Omidiyeh           | 4                  | 0        | 3         | 0        | 12 (5-19)                       |
| Ramhormoz          | 11                 | 0        | 5         | 0        | 33 (7-56)                       |
| Ramshir            | 7                  | 0        | 5         | 0        | 18 (10-32)                      |
| Shadegan           | 5                  | 0        | 1         | 0        | 10                              |
| Shushtar           | 17                 | 5        | 4         | 3        | 15 (3-37)                       |
| Susa               | 16                 | 0        | 6         | 0        | 12 (5-28)                       |
|                    |                    | -        | -         | -        | -= (- =-)                       |

24

Table 1 Population density of cereal cyst nematodes, *Heterodera avenae* and *H. filipjevi*, in soil samples of irrigated and rain-fed wheat fields in Khuzestan province, Iran.

\* includes both species of *H. avenae* and *H. filipjevi* 

145

Overall and Mean

**Table 2** Samples characteristics and population density of cereal cyst nematodes, *Heterodera avenae* and *H. filipjevi* in barley fields in Khuzestan province, Iran.

13

18 (2-103)

47

| District         | Number of surveyed<br>fields |          | Number of infested samples |          | Number of cysts/100<br>_ g soil | Number of eggs<br>and J2/100 g Soil |
|------------------|------------------------------|----------|----------------------------|----------|---------------------------------|-------------------------------------|
|                  | Irrigated                    | Rain-fed | Irrigated                  | Rain-fed | – g 5011 a                      | inu 52/100 g 50ii                   |
| Ahvaz            | 1                            | 0        | 0                          | 0        | 0                               | 0                                   |
| Andika           | 0                            | 3        | 0                          | 1        | 16 (13-19)                      | 183 (10-267)                        |
| Baghmalek        | 6                            | 5        | 6                          | 1        | 29 (3-54)                       | 428 (0-734)                         |
| Haftgel          | 0                            | 2        | 0                          | 0        | 0                               | 0                                   |
| Hendijan         | 1                            | 0        | 0                          | 0        | 0                               | 0                                   |
| Izeh             | 0                            | 2        | 0                          | 2        | 16 (15-17)                      | 848 (797-900)                       |
| Korramshahr      | 2                            | 0        | 0                          | 0        | 0                               | 0                                   |
| Lali             | 1                            | 1        | 1                          | 1        | 41 (11-71)                      | 333 (0-667)                         |
| Omidiyeh         | 1                            | 0        | 1                          | 0        | 9                               | 200                                 |
| Ramhormoz        | 3                            | 0        | 1                          | 0        | 20                              | 167                                 |
| Shadegan         | 1                            | 0        | 0                          | 0        | 0                               | 0                                   |
| Shushtar         | 1                            | 0        | 0                          | 0        | 0                               | 0                                   |
| Susa             | 1                            | 0        | 0                          | 0        | 0                               | 0                                   |
| Overall and Mean | 18                           | 13       | 9                          | 6        | 11 (3-71)                       | 166 (0-900)                         |

Number of \*eggs

and J2/100 g soil) 500 400 200 0 519 (0-2367) 0 508 (0-2500) 511 (10-1100) 650 575 (50-1100) 100 344 (0-733) 0 200 (0-400) 0 456 (100-867)

200 (100-500) 628 (600-1534) 1200 (0-3400) 500 224 (0-600) 483 (0-1500)

395 (0-3400)

J. Crop Prot.

In some areas of the province with high nematode population i.e, Ramshir and Behbahan regions, the damage of the disease was very obvious. In Khuzestan province, H. filipjevi with an initial population of 9 eggs and J2/ g of soil reduced grain yield, dry biomass, shoot dry weight, plant height and tillering by 40-52, 14-53, 6-69, 8-21 and 10-39 percent respectively during 2008-2009 on wheat (Ahmadi et al., 2010). This species reduced wheat grain yield by 11 percent even at the lowest population density of 2.5 eggs and J2/g soil in a microplot trial (Hajihasani et al., 2010). H. avenae type B with an initial population of 62 eggs and J2/ g of soil reduced grain yield, shoot dry weight and shoot height by 11-21, 5-39 and 6-14 % respectively during 2009-2010 on wheat (Ahmadi et al., 2012).

Infested fields showed patches of stunted plants that varied in size (Fig. 1B). The symptoms produced on the roots were proliferation of the roots showing a bushy knotted appearance with several females visible at each knot (Fig. 1A). Above-ground symptoms appear early in the season as pale green patches of plants with fewer tillers.

The population densities of CCNs in soil samples of wheat ranged from 2 to 103 cysts (mean 18) /100 g of soil and 0 to 3400 (mean 395) eggs and J2s /100 g of soil. The highest levels of infestation were found in Masjed Soleiman and Dezful regions, where the total number of cysts per 100 g of soil reached 103 and 99 cysts /100 g of soil respectively. The population densities of CCNs in soil samples of barley were 11-71 cysts (mean 36) /100 g of soil and 0-734 (mean 419) eggs and J2s/100 g of soil. The highest and lowest incidences were observed in Lali and Ramhormoz regions with 100 and 33.3 % respectively.

Distribution map of the CCNs in wheat and barley fields of Khuzestan province is shown in Fig. 3. The occurrence of CCNs in highland regions *i.e.* northern and eastern parts was relatively high compared to the other parts, in lowland areas. The nematode population density index of CCNs in Khuzestan province indicates that about half of the wheat fields showed moderate to high infestation (Fig. 3), and severe infestation was observed in Ramshir region (Fig. 4). Data for barley fields showed that half of the surveyed barley fields were infested by CCNs (Fig. 4). The number of J2 and eggs of CCNs in some regions were greater than that considered as damage threshold level for this nematode (Gill and Swarup, 1971; Meagher and Brown, 1974) and it is likely that these populations could cause economic yield loss. Crop rotation with non-host crops is one of the most effective methods to control the CCNs (Nicol, 2002). The other controlling methods include clean fallow and deep ploughing 2-5 times during May to June in India (Swarup, and Sosa-Moss, 1990), early planting of wheat in order to increase the plant tolerance vigor against nematode attack and application of nematicides in planting (Brown and Kerry, 1987).



**Figure 1** A, knotted wheat roots attacked by CCNs, with visible white females; B, Showing patches of stunted plants in a wheat field infested with CCNs.



Figure 2 GIS distribution map of cereal cyst nematodes, *Heterodera avenae* and *H. filipjevi*, in Khuzestan province, Iran.

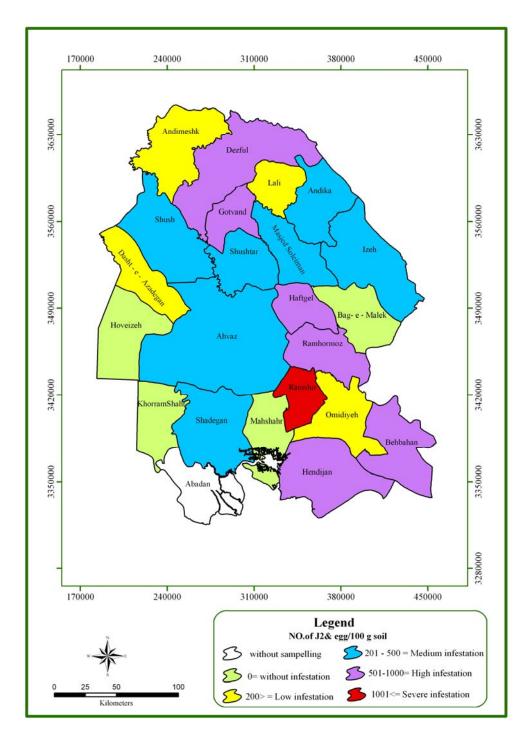
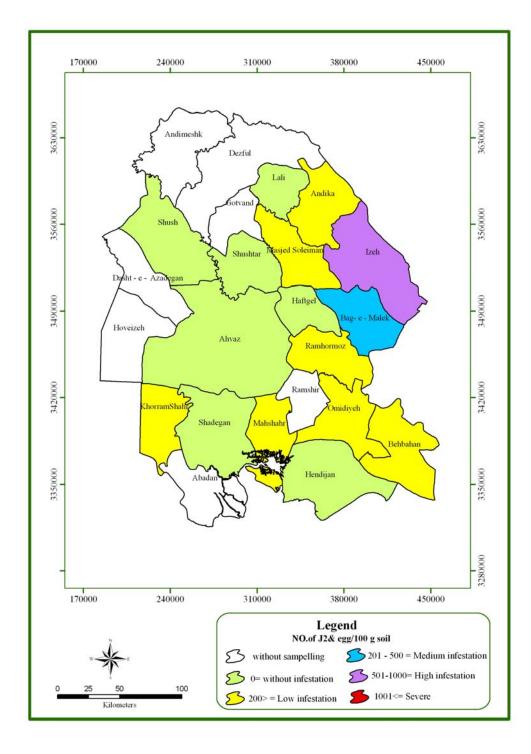
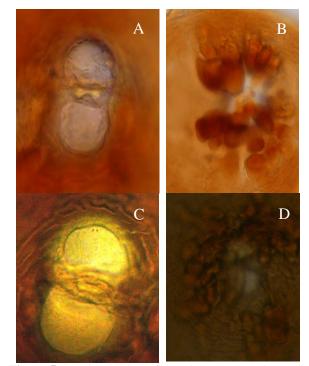
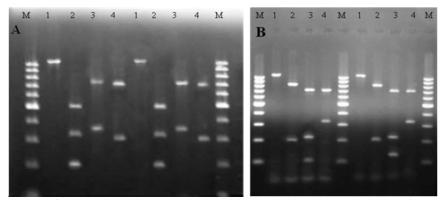



Figure 3 GIS map of population density of cereal cyst nematodes, *Heterodera avenae* and *H. filipjevi*, in wheat fields of Khuzestan province, Iran.





Figure 4 GIS map of population density of cereal cyst nematodes, *Heterodera avenae* and *H.filipjevi*, in barley fields of Khuzestan province, Iran.

#### **Identification of species**


The collected cysts were typically ovoid to lemon-shaped. The main morphological characteristics of the cyst vulval cone that separate the two species, H. avenae and H. filipjevi, are shown in Fig. 5. H. avenae cysts are large, dark-brown to black with, heavy prominent bullae and no underbridge in the vulval cone (Fig. 5A,B). Cysts of H. filipjevi are smaller, yellow to light-brown in color. They possess light bullae and a distinct underbridge close to the vulval bridge, thick in the middle and rather weak at the ends (Fig. 5 C, D). The morphological and morpohometric features were in agreement with those published for each species (Table 3) (Subbotin et al., 1999). PCR of the rRNA\_ITS produced a single fragment of ca 1030bp for H. filipjevi and H. avenae. HinfI and PstI differentiated two morphologically closely related species, H. filipjevi and H. avenae (Fig. 6). The patterns yielded by using of the restriction enzyme RsaI clearly distinguished H. avenae type B from type A which are in agreement with those patterns reported for type B of H. avenae (Subbotin et al., 2003). The restriction enzyme RsaI does not form any bands in type A. H. avenae type B was previously reported from the western provinces of Iran (Tanha Maafi et al., 2007; 2009), in this research it was also detected from Khuzestan province.

#### Acknowledgment

The authors would like to thank Eng. M. Shetab Bushehri (Agricultural and Natural Resources Research Centre of Khuzestsn) for reading the manuscript and Engs. F. Hadadi, N. Pashem Forush and Z. Zaheri for their assistance.



**Figure 5** Terminal region of cereal cyst nematodes. A and B *H. avenae*, showing fenestration, vulval slit and heavy bulae; C, D Vulval cone of *H. filipjevi* showing fenestration, vulval slit, underbridge and light bulae.



**Figure 6** rRNA-RFLP of *Heterodera filipjevi* and *Heterodera avenae* Type *B*: A: *Heterodera avenae*: M: DNA Ladder 100bp, 1: Unrestricted PCR products, 2: PstI, 3: HinfI, 4: RsaI, B: Heterodera filipjevi: M: DNA Ladder 100bp, 1: Unrestricted PCR product, 2: *HinfI, 3: PstI, 4: RsaI*.

**Table 3** Morphopmetrics of cysts, con-top and  $J_2$  of Heterodera avenae and H. filipjevi from Khuzestan province, Iran (Measurements in µm, with mean standard deviation, range).

| Character                 | H. avenae                            | H. filipjevi                      |  |  |
|---------------------------|--------------------------------------|-----------------------------------|--|--|
| Cyst (n)                  | 10                                   | 10                                |  |  |
| Length                    | $624 \pm 83 \; (524804)$             | $567 \pm 92 \ (461 \text{-} 724)$ |  |  |
| Width                     | $517 \pm 67~(385\text{-}631)$        | $394 \pm 64 \ (261-488)$          |  |  |
| Length/ Width             | $1.2 \pm 0.1 \ (1.02 \text{-} 1.38)$ | $1.3\pm 0.1\;(1.48\text{-}1.76)$  |  |  |
| Con-Top(n)                | 10                                   | 10                                |  |  |
| Vulval slit<br>length     | 9 ± 1.4 (7-11)                       | $9.9 \pm 1.5$ (8-13)              |  |  |
| Fenestral length          | $47 \pm 1.4$ (43-50)                 | $47.6 \pm 4 \ (47-60)$            |  |  |
| Fenestral width           | $20.3 \pm 1.8 \; (17\text{-}22)$     | 24 ± 1.7 (23-29)                  |  |  |
| Vulval bridge<br>width    | 9.4 ± 1.8 (7-13)                     | 7.2 ± 0.7 (6-9)                   |  |  |
| Underbridge<br>lentgth    | Absent                               | 74.2 ± 4.7 (75-90)                |  |  |
| Second-stage juvenile (n) | 10                                   | 10                                |  |  |
| L                         | $559 \pm 18 \ (520\text{-}590)$      | 647 ± 32.4 (684-782)              |  |  |
| а                         | 24.3 ± 1.7 (20-24)                   | $23 \pm 1.2 (24-27)$              |  |  |
| b                         | $5.3 \pm 0.2$ (8-10)                 | $4.2 \pm 0.8$ (3-7)               |  |  |
| b'                        | $4.7 \pm 0.3$ (4-6)                  | $4.3 \pm 0.8$ (3-6)               |  |  |
| Stylet length             | $27.5 \pm 0.7 \; (26\text{-}29)$     | $23.3 \pm 1.4 \; (23\text{-}27)$  |  |  |
| Tail length               | $67.3 \pm 5.2 \ (58-70)$             | $52.4 \pm 1.3 \ (57\text{-}60)$   |  |  |
| Hyaline tail part         | 38.7 ± 1.4 (35-40)                   | $32.3 \pm 3.6 (29-40)$            |  |  |

#### Reference

- Abidou, H., El-Ahmed, A., Nicol, J. M., Bolat, N., Rivoal, R. and Yahyaoui, A. 2005. Occurrence and distribution of species of the Heterodera avenae group in Syria and Turkey. Nematologia Mediterranea, 33: 195-201.
- Ahmadi, A. R. and Tanha Maafi, Z. 2008. Occurrence of cereal cyst nematode, Heterodera avenae, in cereal fields of Khuzestan province, Proceedings of the 18th Iranian plant protection congress, Volume II plant diseases, University of Bu-Ali Sina, Hamedan, Iran: 568.
- Ahmadi, A. R. and Tanha Maafi, Z. and Abeyat, T. 2010. Crop loss of Heterodera filipjevi on some cultivars of wheat, barley and triticale under field condition of

southwest of Iran, Proceedings of the 19th Iranian plant protection congress, Volume II plant diseases, Tehran, Iran: 617.

- Ahmadi, A. R. and Tanha Maafi, Z. 2009. Occurrence and distribution of cereal cyst nematodes (Heterodera avenae and H. *filipjevi*) in Khuzestan province, Iran, in cereal cyst nematodes: Status, research and outlook (I. T. Riley, J. M. Nicol, A. A. Dababat, (Eds.): 79-81.
- Ahmadi, A. R., Tanha Maafi, Z., Dababat, D. and Nicol, J. M. 2012. Impact of Heterodera avenae type B on four commercial wheat cultivars under field conditions in southwest of Iran, 31th international symposium of the European society of nematologists, Adana, Turkey, 22-27 September: 315.
- Al-Yahya, F. A., Alderfasi, A. A., Al-Hazmi, A. S., Ibrahim, A.A.M. and Abdul-Razig, A. T. 1998. Effect of the cereal cyst nematode on growth and physiological aspects of wheat under field conditions, Pakistan Journal of Nematology, 16: 55-62.
- Andersson, S. 1982. Population dynamics and control of Heterodera avenae, a review with some original results, EPPO Bull, 12: 463-475.
- Anon. 2011. Agricultural Statistical Yearbook, Tehran, Iran, Ministry of Jihad-E-Agriculture, Statistical and Information Technology Unit.
- Anon. 2012. FAO, Agricultural Statistical Yearbook, http://www.fao.org/ Url: docrep/004/x2596e/x2596e00.HTM.
- Bekal, S., Gauthier, J. P. and Rivoal, R. 1997. Genetic diversity among a complex of cereal cyst nematodes inferred from RFLP analysis of the ribosomal internal transcribed spacer region, Genome, 40: 479-486.
- Brown, R. H. 1984. The ecology and control of cereal cyst nematode (Heterodera avenae) in Southern Australia. Journal of Nematology, 16: 216-222.
- Brown R. H. and Kerry, B. R. Principles and practice of nematode control in crops, Academic Press.
- De Grisse, A. T. 1969. Redescription ou modification de quelques techniques utilisees dans letude des Nematodes

phytoparasitaires, Mededelingen. Rijiksfacultiet der landbouwetenschappen, Gent, 34: 351-369.

- Fenwick, D. W. 1940. Methods for the recovery and counting of cysts of *Heterodera schachtii* from soil, Journal of Helmintology, 18: 155-172.
- Fischer, R. A., Byerlee, D. and Edmeades, G. O. 2009. Can technology deliver on the yield challenge to 2050? FAO expert meeting on how to feed the world in 2050.
- Franklin, M. T. 1969. *Heterodera latipons* n. sp., a cereal cyst nematode from the Mediterranean region, Nematologica, 15: 535-542.
- Gill, J. S. and Swarup G. 1971. On the host range of cereal cyst nematode, *Heterodera avenae*, the casual organism of 'molya' disease of wheat and barley in Rajasthan, India, *Indian Journal of Nematology*, 1: 63-67.
- Greco, N. 1994. Survey on nematodes of barley in Syria conducted on March 1994, Preliminary research report submitted to ICARDA, Aleppo, Syria.
- Hajihasani, M., Hajihasani, A. and Ghalandar, M. 2008. Study on distribution and population density of cereal cyst nematodes (*Hererodera* spp.) in rain-fed and irrigated wheat fields of Markazy province. Journal of new findings in agriculture, 2 (4): 366-374 (In persian).
- Hajihasani, A., Tanha Maafi, Z., Nicol, J. M. and Rezaee, S. 2010. Effect of cereal cyst nematode, *Hererodera filipjevi*, on wheat in microplot trials. Nematology, 12: 357-363.
- Handoo, Z. A. 2002. A key and compendium to species of *Heterodera avenae* group (Nematoda: Heteroderidae), Journal of Nematology, 34: 250-262.
- Holgado, R., Andersson, S., Rowe, J. A. and Magnusson, C. 2004. First record of *Heterodera filipjevi* in Norway, Nematologia Mediterranea, 32: 205-211.
- Ibrahim, A. A. M., Al-Hazmi, A.S., Al-Yahya, F. A. and Alderfasi A. A. 1999. Damage potential and reproduction of *Heterodera avenae* on wheat and barley under Saudi field conditions, Nematology, 11: 625-630.

- Joyce, S. A., Reid, A., Driver, F. and Curran, J. 1994. Application of polymerase chain reaction (PCR) methods to identification of entomopathogenic nematodes. In: Burnell, A. M., Ehlers, R. U. and Masson, J. P. (Eds.). Cost 812 biotechnology: Genetics of entomopathogenic nematode-bacterium complexes. Proceedings of symposium and workshop, St. Patrick's college, Maynooth, Co. Kildare, Ireland, Luxembourg, European commission, DG XII, pp. 178-187.
- Khan, R. M., Agarwal, V. and Mathur, B. N. 1990. Chemical control of simultaneous cereal cyst nematode and termite infestations in wheat in Rajasthan, India, RACHIS (ICARDA) Barley and Wheat Newsletter, 9: 9-11.
- Meagher, J. W. and Brown, R. H. 1974. Microplot experiments on the effect of plant hosts on populations of cereal cyst nematode (*Heterodera aveane*) and its potential as a pathogen of wheat, *Nematologica*, 20: 337-346.
- Meagher, J. W., and Brown, R. H. 1974. Microplot experiments on the effect of plant hosts on populations of the cereal cyst nematode, *Heterodera avenae*, and on the subsequent yield of wheat, Nematologica, 20: 337-346.
- Miller, L. I. 1986. Economic importance of cyst nematodes in North America. pp. 373-385, in cyst nematodes, F. Lamberti and C. E. Taylor (Eds.), Plenum Press, London, U. K.
- Namouchi- Kachouri, N., Bchir, M. M., and Hajji, A. 2009. Global importance of the main nematodes associated with cereals in Tunisia, in cereal cyst nematodes: Status, research and outlook, I.T. Riley, J. M. Nicol, A. A. Dababat (Eds.): 41-44.
- Nicol, J. M. 2002. Important nematode pests, pp. 345-366, in B. C. Curtis, (Ed.), Bread wheat: Improvement and production, Rome, Italy, FAO plant production and protection series.
- Norton, D. C. 1978. Ecology of plant parasitic nematodes. Wiley, New York.
- Philis, I. 1988. Occurrence of *Heterodera latipons* on barley in Cyprus, Nematologia Mediterranea, 16: 223.

- Renco, M. 2005. Current occurrence and distribution of *Heterodera avenae* in the Slovak Republic. Plant Protect. Sci., 41:80-85.
- Rivoal, R. and Nicol, J. M. 2009. Past research on the cereal cyst nematode complex and future needs, in cereal cyst nematodes: Status, research and outlook, I.T. Riley, J. M. Nicol, A. A. Dababat (Eds.): 3-9.
- Rivoal, R. and Cook, R. 1993. Nematodes pests of cereals, pp: 259-304, in K. Evans, D. L. Trudgill and J. M. Wester (Eds.), Plant parasitic nematodes in temperate agriculture, CAB International.
- Rivoal, R., Valette, S., Bekal, S., Gauthier, J. P. and Yahyaoui, A. 2003. Genetic and phenotypic diversity in the graminaceous cyst nematode complex, inferred from PCR-RFLP of ribosomal DNA and morphometric analysis, European Journal of Plant Pathology, 109: 227-241.
- Romero, M. D. 1980. *Heterodera latipons* especie nueva para Espana, Nematologia Mediterranea, 8: 95-98.
- Rumpenhorst, H. J., Elekcioglu, I. H., Sturhan, D., Ozturk, G., and Enelli, S.1996. The cereal cyst nematode *Heterodera filipjevi* (Madzhidov) in Turkey, Nematologia Mediterranea, 24: 135-138.
- Sabova, M., Valocka, B., Liskova, M. and Vargova, V. 1988. The first finding of *Heterodera latipons* Franklin, 1969 on grass stands in Czechoslovakia, Helminthologia, 25: 201-206.
- Sawadogo, A., Thio B., Kiemde S., Drabo I., Dabire C., Ouedraogo J., Mullens T. R, Ehlers, J. D. and Roberts P. A. 2009. Distribution and prevalence of parasitic nematodes of Cowpea (*Vigna unguiculata*) in Burkina Faso, Journal of Nematology, 41: 120-127.
- Sewell, R. 1973. Plant parasitic nematodes from Canada and abroad, 1971, Canadian Plant Disease Survey, 53: 34-35.
- Sikora, R. A. and Oostendorp, M. 1986. Occurrence of plant parasitic nematodes in ICARDA experimental fields, ICARDA, Aleppo, Syria.

- Sikora, R. A. 1988. Plant parasitic nematodes of wheat and barley in temperate and emperate semiarid regions a comparative analysis, pp. 46-68, in nematodes parasitic to cereals and legumes in temperate semiarid regions, M. C. Saxena, R. A. Sikora and J. P. Srivastava (Eds.), workshop proceedings, 1-5 March 1987, Larnaca, Cyprus, ICARDA, Aleppo, Syria.
- Smiley, R. M., Whittaker, R.G., Gourlie, J. A., Easley, S. A. and Ingham, R. E. 2005. Plant parasitic nematodes associated with reduced wheat yield in Oregon, *Heterodera avenae*, Journal of Nematology, 37:297-307.
- Stoyanov, D. 1982. Cyst forming nematodes on cereals in Bulgaria, EPPO Bulletin, 12: 341-344.
- Sturhan, D.1996. Occurrence of *Heterodera filipjevi* (Madzhidov, 1981) Stelter, 1984 in Iran, Pakistan Journal of Nematology, 14: 89-93.
- Subbotin, S. A., Rumpenhorst, H. J., and Sturhan, D. 1996. Morphological and electrophoretic studies on populations of the *Heterodera avenae* complex from the former USSR, Russian Journal of Nematology, 4: 29-39.
- Subbotin, S. A., Sturhan, D., Rumpenhorst, H. J. and Moens, M. 2003. Molecular and morphological characterisation of the *Heterodera avenae* species complex (Tylenchida: Heteroderidae), Nematology, 5: 515-538.
- Subbotin, S. A., Waeyenberge, L., Molokanova, I. A. and Moens, M. 1999. Identification of *Heterodera avenae* group species by morphometrics and rDNA-RFLP, Nematology, 1: 195-207.
- Subbotin, S. A., Waeyenberg, L., and Mones, M. 2000. Identification of cyst forming nematodes of the genus *Heterodera* (Nematoda: Heteroderidae) based on the ribosomal DNA-RFLP. Nematology 2: 153-164.
- Swarup, G. and Sosa-Moss, C. 1990. Nematode parasites of cereals, pp 109-136, in M. J. Luc and R. Sikora (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture, CAB International.

- Tacconi, R. 1976. Sulla presenza di *Heterodera* carotae Jones, 1950 e *Heterodera latipons* Franklin, 1969 nel Veneto, Redia, 59: 305-311.
- Talachian, P., Akhiani, A., Grayeli, Z., Shah Mohammadi, M. and Teimouri, F. 1976. Survey on cyst forming nematodes in Iran in 1975 and their importance, Iranian Journal of Plant Pathology, 12: 42-43 (Abtract in English).
- Tanha Maafi, Z., Sturhan, D., Kheiri, A. and Geraert, E. 2007. Species of the *Heterodera avenae* group (Nematoda: Heteroderidae) from Iran, Russian Journal of Nematology, 15: 49-58.
- Tanha Maafi, Z., Ahmadi, A. R., Hajihasani A., Karimipour Fard, H. and Nicol, J.M. Current progress on cereal cyst nematodes (*Heterodera filipjevi*, *H. avenae* type B and *H.latipons*) of importance on wheat in Iran, 30th international symposium of the European society of nematologists, Vienna, Austria, 19-23 September: 226.
- Tanha Maafi, Z., Ahmadi, A. R., Hajihasani, A., Karimipour Fard, H., Dababat, A and Nicol, J. M. 2012. Research status and perspective of cereal cyst nematode, (*Heterodera* spp.) research on wheat in Iran, 31th international symposium of the European society of nematologists, Adana, Turkey, 23-27 September: 299-300.
- Tanha Maafi, Z., Nicol, J. M., Kazemi, H., Ebrahimi, N., Gitty, M., Ghalandar, M., Mohamadi Pour, M. and Khoshkhbar, Zh. 2009. Cereal cyst nematodes, root rot pathogens and root lesion nematodes affecting cereal production in Iran, in cereal cyst nematodes: Status, research and outlook, I. T. Riley, J. M. Nicol, A. A. Dababat (Eds.): 51-55.
- Wouts, W. M., Baldwin J. G. 1998. Taxonomy and identification, in the cyst nematodes, S.B. Sharma (Ed.), Dordrecht, the Netherlands, Kluwer Academic Publishers: 83-122.

### وقوع نماتودهای سیستی غلات (H. filipjevi و Heterodera avenae type B) در جنوب غربی ایران

عليرضا احمدى"\* و زهرا تنها معافى

۱- مرکز تحقیقات کشاورزی و منابع طبیعی خوزستان، صندوق پستی ۳۳۴۱– ۶۱۳۳۵، اهواز، ایران. ۲- مؤسسه تحقیقات گیاهپزشکی کشور، صندوق پستی ۱۴۵۴–۱۹۳۹، تهران، ایران. \* پست الکترونیکی نویسنده مسئول مکاتبه: alirahmadi2000@gmail.com دریافت: ۱۶ خرداد ۱۳۹۲؛ پذیرش: ۱۷ مهر ۱۳۹۲

چکیده: طی یک بررسی در مزارع غلات استان خوزستان در سالهای ۱۳۹۰–۱۳۸۷ مشخص گردید که نماتودهای سیستی غلات بهطور وسیعی در این منطقه پراکنده هستند. نماتودهای سیستی غلات بهترتیب در ۳۷ و ۳۵ درصد از ۲۰۰ نمونه جمعآوری شده مزارع گندم و جو وجود داشتند. گونههای بهترتیب در ۳۷ و ۳۵ درصد از ۲۰۰ نمونه جمعآوری شده مزارع گندم و جو وجود داشتند. گونههای مولکولی با روش Heterodera avenae تیپ ۵ و محبت شناسی ریختسنجی و همچنین مولکولی با روش ۲۳۹۰ TRNA این اسیست و ۲۰۰۰- (میانگین ۳۹۵) تخم و پوره سن دو نمونههای گندم بین ۲۰۱۳- (میانگین ۱۸) سیست و ۲۰۰۰- (میانگین ۱۹۵۵) تخم و پوره سن دو نماتود در ۱۰۰ گرم خاک خشک و برای نمونههای جو بین ۲۱–۳ (میانگین ۱۹۵۵) سیست و ۹۰۰-(میانگین ۱۶۶) تخم و پورن سن دو در ۱۰۰ گرم خاک خشک شمارش گردیدند. کمترین و بیشترین میزان وقوع این دو گونه مربوط به مناطق اهواز (۸ درصد) و بهبهان (با میزان ۸۳ درصد) بود. میزان جمعیت تخم و پوره سن دو نماتودهای فوق در بعضی از مناطق نمونهبرداری شده، از سطح آستانه خسارت درنظر گرفته شده برای این گروه از نماتودها بالاتر است و احتمال خسارت اقتصادی به محصول گندم و جو در این مناطق وجود دارد.

**واژگان کلیدی:** ایران، پراکنش، خوزستان، نماتدهای سیستی غلات.