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Abstract: Leaf rust is one of the most important diseases and influences the
sustainable cultivation of wheat. Therefore, for the first time in Iran, the spatial
pattern and temporal progress of this disease were assessed in five wheat
cultivars, including Chamran 2, Star, Ofogh, Kavir, and Boolani, with different
resistance levels in 2015-16 and 2016-17 cropping years. In both years, disease
progress curves (DPCs) showed a sigmoid-like shape, and the rate curves had
an obvious inflection point, both the features of Gompertz and logistic models.
Plots of transformed, predicted disease intensity values and residual patterns
indicated that disease intensity data fit closely with Gompertz and logistic
models. Gompertz and logistic models with a bit of variation gained R? above
90 % in all cultivars. Based on the results, there is no direct relationship between
cultivar resistance and best-fitted models, as in both years, logistic and
Gompertz models fitted properly with disease intensity data for all cultivars. In
the Gompertz model, the mean rate of increase (rG) per unit of disease in the
resistance (Chamran 2) and susceptible (Boolani) cultivars were 0.052 and 0.09,
respectively, and in the logistic model (rL) were 0.12 and 0.144, respectively.
Results indicated that in the first weeks after the appearance of the disease
symptoms, the spatial pattern of diseased plants was aggregated, and the amount
of the dispersion index and lloyd’s Index of Patchiness in the first and second
years were 8.9, 9, and 1.3, 1.2, respectively. Three weeks after data collection,
the spatial pattern became random.
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Introduction 30% of wheat will be reduced by

environmental factors and pests (Prasad et al.,
According to the researchers’ prediction, 2017). Wheat leaf rust (WLR: caused by
wheat production in the world should be Puccinia triticina Eriks) is one of the most
increased by 60% by 2050; meanwhile, 20 to important yield-limiting diseases in Iran and
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worldwide. It influences the sustainable
cultivation of wheat (Teferi, 2015). Severe
epidemics of the WLR resulted in significant
yield losses and have become a serious
economic problem in the world (El Jarroudi et
al., 2014; Ordonez and Kolmer, 2007). Plant
resistance, environmental conditions,
pathogen race, agricultural practices, and
infected plant’s growth stage affect the rate of
yield loss (Singh et al., 2001; Martinez et al.,
2005). The damage of WLR from traceable
amounts ranging up to 80 % (Dadrezaei and
Torabi, 2016; Dadrezaei et al., 2018;
Hasanzadeh et al., 2020), and the occurrence
severe outbreak in the early growth stages
result in plant death (Wiik, 2009). In heavy
epidemic years, losses due to WLR in plots of
spring wheat cultivars were 5 to 40%,
depending on the resistance of the cultivar
(Kolmer et al., 2014); even under suitable
environmental conditions, yield losses may
reach up to 70% (Oerke and Dehne, 1997
Roelfs et al., 1992). The importance of rusts is
still increasing due to the rapid emergence of
new races and quick adaptation of pathogen
populations to resistant cultivars (Chen, 2005).

WLR is borderless and is found worldwide,
affecting wheat production (Buck et al., 2007).
Due to the gradient of horizontal distribution and
cultivation of susceptible plants, inoculum
carried easily by the wind causes a significant
problem for local use of fungicides and also
considerable damage (Fitt et al., 1987).
Therefore, for efficient regional control,
reducing labor time, and improving the spraying
time, understanding the epidemiology of WLR is
essential ~ (Pethybridge et al.,, 2005).
Epidemiology could lead to specific managerial
suggestions and conceptual creativities in
disease management (Madden, 2006), including
the analysis of the spatial pattern and temporal
progress of disease in host plant populations.
Epidemiologists use the disease temporal
statically progress models, and indexes of spatial
patterns to predict, understand, compare, and
describe the epidemics, which can lead to
improving disease control strategies. Many
studies have assessed disease intensity over time
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(Madden, 2006) to evaluate cultivars with
different levels of resistance and spraying levels
(Madden and Hughes, 1995). For this purpose,
disease intensity must be assessed a minimum of
five times to obtain an integrated measure of the
rate of disease progress during an epidemic
(Stevenson and Jeger, 2015). Gompertz, logistic,
and monomolecular models are the most
common models for fitting Disease progress
curves (Campbell and Madden, 1990).

About 71 % of cultivated crops in Iran are
dedicated to cereals, constituting 24 % of total
crop products. The southwest Iran (Khuzestan
Province) holds the fourth place in the wheat
cultivation area; nevertheless, it is the first wheat
producer (Hasanzadeh et al., 2019). The climate
of this province (warm and humid) is suitable for
the WLR disease. Although awareness of the
accurate time and place of the appearance and
development of the WLR disease is necessary
for planning and efficient use of fungicides,
basic epidemiological studies have not been
available yet. Therefore, we studied the spatial
and temporal dynamics of WLR disease to select
and introduce the most appropriate model to
describe temporal disease progress and the local
and regional spatial of disease distribution. The
results of this epidemiological research would be
a step forward to help producers make
management strategies to improve performance
(along with reducing damage). Eventually, the
knowledge generated through this
epidemiological research could complement the
previous studies and provide a basis for future
research to use the accumulated knowledge in
the control of WLR.

Materials and Methods

Seed and inoculum preparation

The Agriculture Research Center in Khuzestan
Province provided all the used seeds in both
field experiments. Seed rates used for cultivars
Chamran 2, Ofogh, Star, Kavir and Boolani
were 156, 152, 156, 164 and 160 kg ha?,
respectively. Currently, except Boolani, all the
wheat cultivars are cultivated on a large scale
in Khuzestan province. The area under
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cultivation of these cultivars reaches 40%, and
more than half of it belongs to the Chamran 2
cultivar. Plots were cultivated on the field, and
all the current cultivation operations were
performed.

Puccinia triticina Eriks' primary inoculum
indigenous to Khuzestan province was collected
during 2015 and 2016 from wheat nurseries
located at Seed and Plant Improvement Institute
in Karaj province to avoid additional cultivation
operations. Collected urediniospores were stored
in tubes and put into a desiccator for 24 hours to
be dried, and then placed in deep freeze vials and
stored at -80 °C. Before using spores in the
experiment, the frozen vials were incubated in a
40 °C water bath for two minutes (Watkins et al.,
2001).

Field experiments
Temporal analysis
Five winter wheat cultivars including Chamran 2
(resistant), Star (semi-resistant), Ofogh (semi-
resistant), Kavir (semi-susceptible), and Boolani
(susceptible) were cultivated in December 2015
and 2016 in the Agricultural and Natural
Resource Center of Khuzestan province in
Ahvaz (Fig. 1). The experiments were conducted
in one treatment with four repeats as the
Randomized Complete Block design (RCBD).
Each repeat included six rows of wheat with 6 m
length and 1.2 m width. The distance between
rows and in rows was 25 and 5 cm, respectively.
All around the studied farm, the susceptible cv.
Boolani was cultivated as the spreader.
Inoculation was carried out according to
Eslahi and Mojerlou, (2016). Four grams of
urediniospores were thoroughly mixed with 20
g of talc powder and poured on the wet leaves
of the wheat plants in the plots and susceptible
cv. Boolani was planted on the borders of the
experimental plot and between treatments. The
farm's borders were covered with transparent
polyethylene for 48 hours. To ensure infection
establishment, inoculation was continued at
intervals of one week until the appearance of
the first symptoms. The growth stage in which
the first inoculation was done during 2015-16
and 2016-17 were recorded according to the
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Zadoks growth scale (Zadoks et al., 1974)
(Table 1). Due to the importance of
meteorological data in the prevalence and
development of rusts, rainfall, and temperature
data will be used to analyze the results.

Spatial analysis

Local susceptible winter wheat cv. Boolani was
cultivated in December 2015 and 2016 in the
Agricultural and Natural Resource Center of
Khuzestan province in Ahvaz (Fig. 1). The
experimental plot size was 10 m x 10 m (100
m2). The distance between rows and in rows was
25 and 5 cm, respectively. For obtaining the areal
infection center, one side of the farm (1 m x 10
m) was inoculated in February at GS27 growth
stage (Zadokas scale). Inoculation was carried
out according to Eslahi and Mojerlou, (2016).
The inoculated area was covered by transparent
polyethylene for 48 hours. The assessment of
spatial patterns was performed 12 days after the
first appearance of the symptoms in the
inoculated area. By applying 0.6 square
guadrats, the four-stage assessment was
conducted with a one-week interval. In each
evaluation, 35 quadrats in different plot spots
were assessed randomly. Disease intensity was
measured using Stevenson's method (Stevenson
and Bowen, 2015).

Analysis

Temporal analysis

Assessment of leaf rust

Disease intensity (%) was measured according to
a modified scale of Cobb (Peterson et al., 1948).
Since the first appearance of symptoms, the
disease was assessed and continued every three
days seven times.

Data analysis

Disease intensity (%) was evaluated with various
disease progress models, from the simplest to the
most complex, including linear, monomolecular,
exponential, logistic, and Gompertz (Table 2).
The EPIMODEL software program was used to
regression analysis and visually fit the WLR
disease severity data to the five models
mentioned above (Nutter et al., 2015).
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Figure 1 Map of Khuzestan province and field experiment which was conducted to the analysis of Wheat leaf
rust (Puccinia triticina Eriks.) disease temporal and spatial progression in winter wheat cultivars Chamran 2,
Star, Kavir, Ofog, and Boolani in Agriculture and Natural Resources Research Center of Ahvaz, Khuzestan
province, Iran.

Table 1 Date of cultivation, inoculation and harvesting of winter wheat cultivars* Chamran 2, Star, Kavir, Ofoq
and Boolani in Agriculture and Natural Resources Research Center of Ahvaz, Khuzestan Province, Iran in 2015-
2016 and 2016-2017.

Year Date of cultivation ~ Frist date of inoculation ~ Number of inoculation Growth stage at first inoculation  Date of harvesting
2015-2016 2 Dec 22 Jan 4 GS 27 1 May
2016-2017 3 Dec 20 Jan 4 GS 27 2 May

Table 2 Five disease progress models commonly used to describe temporal disease progress (Nutter et al., 2015).

Model Integrated expression Absolute rate equation Linearized equation
Linear y=Yo+rt ay _ y =y +rt
dt
Monomolecular  y =1 — (1 — yy)exp(—ryt) dy _ B ( 1 ) B ( 1 )
dt—rM(l ) In 1=y =In =y, + 1yt
Exponential y = (¥o)exp(Tzy) ay _ y In(y) = In(yo) + 7gt
dt = 'F
Logistic 1 dy ( Y ) - ( Yo )
= - = 1-— In =In + 1t
R T (A VAT T ac ==Y T-y) =M a=y) T
Gompertz y = exp{[In(y,)] exp(—75T)} —In[-In(y)] = —=In [~ In(y,) + gt

d
= 15y~ In)]

**The EPIMODEL computer program uses the linearized forms of each model to transform disease intensity assessments and compute model
parameters and regression statistics.

Fitness of models determination (R?) and standard error of the y
Based on the residual distribution patterns, estimate (SEEy = root MSE).

shapes of the disease rate and progress curves,

and plots of predicted, transformed disease Spatial analysis

intensity values, one of the most appropriate Measuring Dispersion Index (D)

models was chosen for y transformations and Analysis of spatial pattern is performed by runs
describing the epidemic. The fitness of different and based on the calculation of the index of
models was examined by coefficients of dispersion, D (Stevenson, 2015) in rows and
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grasses like wheat, respectively (Stevenson,
2015). The dispersion index was used to
determine the spatial pattern of WLR in the field
(Stevenson, 2015).
D =5S%/X

S2 is the variance of the samples; X is the
mean of the infected plants. If D = 1, indicating
that the pattern of disease plants is random. If
D > 1, the pattern of disease plants is
aggregated, and if D < 1, the pattern of disease
plants is regular. The chi-square test is used to
test significant deviation from randomness. If
P < 0. 05, the null hypothesis of randomness
will be rejected (evidence of aggregation). If P
> 0. 05, the null hypothesis of randomness
cannot be rejected (no evidence of
aggregation).

Measuring Lloyd’s Index of Patchiness (LIP)
The following formula was used for Lloyd's
Index of Patchiness (Bez, 2000).

LIP =1+ [(S? — X)]

S? is the variance of the samples; X is the
mean of the infected plants. This method is based
on the calculation of dispersion index D, which
is known as the relation between the variance
and mean. If LIP = 1 the pattern of disease plants
would be random. If LIP > 1, the pattern would
be a cluster; if LIP < 1, the pattern would be
regular.

Results

Meteorological data analysis
On February, March, and April, flag leaf
emergence and development and seed filling
period, the rainfalls and average monthly
temperatures in Khuzestan province in 2015
were 33.3, 41.1, and 26.6 mm, and 16.8, 20.3,
and 26.5 °C, respectively. In 2016 the rainfalls in
February, March, and April were 4.7, 38.3, and
26.4 mm and the average monthly temperatures
were 17, 21, and 25.9 °C.

Results indicated less rainfall during the
growing season of 2016-17 than in 2015-16,
and during February and March, which is the
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time of the symptoms' appearance, the rainfall
rate was almost half that of the other periods.
Comparing meteorology data for February,
March, and April indicates that in 2015-2016,
weather temperature was one to two °C higher
than in 2016-2017 (Fig. 2). Regarding the
meteorological factors, the weather conditions
were more suitable for the leaf rust
development in 2015-16 than the following
year.

Temporal analysis

2015-16 cropping year

Concerning the wheat cultivars, the disease
intensity of WLR was assessed 39-47 days after
inoculation (Fig. 3). Disease temporal progress
analysis was done with EPIMODEL software
by fitting different models to severity data
(Table 2). Based on the results linear,
exponential, logistic, and Gompertz models
received the highest R? in all cultivars (Table 3).
In cultivar Chamran 2, the disease progress
curve (DPC) showed between logistic,
Gompertz, linear, and sigmoid-like shapes
related to the linear models, the inflection
points of DPC occur before the time wheny =
50% (Fig. 4). The rate curve has a prominent
peak (special for Gompertz and logistic
models); therefore, we can rule out the linear,
and exponential models, the rate curve of these
models is a horizontal line (Fig. 4). Plots of
transformed, predicted disease intensity values
(¥ *), indicate that Gompertz and logistic
models provide a close fit to the data, and
residual patterns are not decisive (Fig. 5). The
Gompertz model, compared to the logistic
model showed a higher R?and less SEEy (Table
3). According to the results, the Gompertz
model was selected as the most appropriate
model. In cultivars Kavir, Boolnai, and Star, the
logistic model was chosen as the best-fit model
to describe WLR progress in field condition of
Khuzestan province, due to the highest R?
(Table 3), shape of DPC and rate curve (Fig. 4),
residual distribution pattern (Fig. 4) and the
simplicity of the model. In the Ofoq cultivar
based on the above criteria, the Gompertz
model was selected as the most acceptable



Spatial-temporal analysis of wheat leaf rust disease

J. Crop Prot.

model compared to the logistic model, with a
little difference.

2016-17 cropping year

Based on the wheat cultivars, the disease intensity
of WLR disease was assessed 40-49 days after
inoculation (Fig. 3). In cultivar Chamran 2, DPC
showed Gompertz, logistic, and curve-like shapes
related to the exponential models (Fig. 6). Rate
curve has an obvious peak; therefore, we can rule
out the exponential models (Fig. 6). Plots of
transformed, predicted disease intensity values
(¥ *), indicate that Gompertz and logistic models
provide a close fit to the data (Fig. 7). Still, the

residual distribution pattern of the logistic model
was more random (Fig. 6). The logistic model
compared to the Gompertz model showed a
higher R? (Table 3). The logistic model was
selected as the most appropriate based on the
evidence. In cultivars Kavir, Boolnai, and Star,
the Gompertz model was chosen as the best-fit
model to describe WLR progress in field
condition of Khuzestan province, due to the
highest R? (Table 3), the shape of DPC and rate
curve, residual pattern (Fig. 6). Same as the
previous year, in Ofoq cultivar logistic model
compared to the Gompertz model was chosen as
the most acceptable model.
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Figure 2 A and B Monthly mean temperature (°C) and total rainfall (cm) of the two growing seasons of 2015-16
and 2016-17 in Ahvaz city (Center of Khuzestan Province).
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Figure 3 Percentage of visible leaf disease severity based on method of Cobb (Peterson et al., 1984).

**A & B 2015-16 and 2016-17 growing years respectively.
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Table 3 Regression statistics (SEEy and R?) and model parameters (slope, intercept) values of disease progress
evaluated for linearized equations of the linear, monomolecular, exponential, logistic, and Gompertz disease
progress models in winter wheat cultivars Chamran 2, Star, Kavir, Ofoq and Boolani in agricultural and natural
resources research center of Khuzestan Province, Iran in 2015-16 and 2016-17.

Cultivar**  Model* 2015-16 2016-17
R? (%) SEEy Intercept ~ Slope R? (%) SEEy Intercept ~ Slope
Chamran2 LI 0.914 0.028 -0.075 0.012 0.772 0.051 -0.115 0.013
M 0.896 0.037 -0.096 0.014 0.732 0.07 -0.153 0.016
E 0.929 0.045 -4.605 0.125 0.878 0.276 -4.142 0.101
L 0.852 0.46 -4.702 0.121 0.868 0.324 -4/295 0.12
G 0.912 0.128 -1.708 0.053 0.835 0.158 -1.692 0.051
Kavir LI 0.826 0.09 0.111 0.02 0.942 0.055 0.096 0.023
M 0.776 0.211 0.018 0.041 0.915 0.130 0.008 0.045
E 0.787 0.281 -1.864 0.057 0.769 0.380 -2.094 0.073
L 0.824 0.431 -1.845 0.098 0.878 0.418 -2.085 0.118
G 0.817 0.29 -0.78 0.064 0.926 0.199 -0.861 0.074
Boolani LI 0.943 0.063 0.062 0.027 0.945 0.059 0.089 0.028
M 0.884 0.201 -0.09 0.058 0.898 0.222 -0.109 0.069
E 0.8 0.383 -2/204 0.08 0.817 0.338 -2 0.075
L 0.902 0.435 -2.295 0.144 0.929 0.378 -2/109 0.139
G 0.923 0.248 -1.003 0.1 0.939 0.242 -0.953 0.09
Ofoq LI 0.94 0.035 -0.03 0.016 0.886 0.063 -0.128 0.022
M 0.907 0.061 -0.07 0.022 0.825 0.118 -0.23 0.032
E 0.91 0.243 -3.157 0.089 0.907 0.273 -3.537 0.108
L 0.932 0.26 -3.231 0.111 0.919 0.329 -3.767 0.141
G 0.947 0.11 -1.303 0.053 0.907 0.181 -1.601 0.071
Star LI 0.903 0.042 -0.025 0.014 0.906 0.038 -0.059 0.015
M 0.87 0.066 -0.06 0.019 0.887 0.054 -0.098 0.019
E 0.92 0.210 -3.086 0.082 0.886 0.258 -3.4 0.091
L 0.928 0.245 -3.147 0.101 0.902 0.288 -3.498 0.11
G 0.925 0.121 -1.269 0.049 0.915 0.123 -1.407 0.051

* LI = Linear, M = Monomolecular, E = Exponential, L = Logistic, G = Gompertz.
**Chamran 2, Star, Kavir, Ofoq and Boolani are, respectively, resistance, semi-resistance, semi-resistance, semi-susceptible, susceptible.

Spatial analysis

Measuring D and LIP Indexes

Results indicated that in the first week after the
appearance of the symptoms, the spatial pattern
of diseased plants or pathogen propagules was
aggregated, and the D index was 8.9 and 9.9 in
the first and second years, respectively (Table 4).
As the disease intensity was higher than 15% in
each gquadrat, the Chi-Square test cannot be used
to determine the fit of goodness. These results
continued into the second and third week of the
data collection, and the D index was 1.6 and 2.04
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for the first and second years of study,
respectively. LIP index results showed that the
spatial pattern was aggregated in the first week
after the symptoms appeared, and this approach
continued until the third week of data collection
(Table 4). After 20 days, the spatial pattern
became random, as expected. Our data showed
that the spatial pattern of WLR was aggregated
at first, and both indexes showed the same
results. Two-year results showed that the
dispersion process and the disease’s models are
similar and aggregated.
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Figure 4 Column A - Disease progress curve (nontransformed disease intensity y, expressed as proportions, vs. time t).
Column B - The rate curve (the estimated rate of change of nontransformed y between pairs of times (dy/dt) against time t.
Column C and D - The residuals vs. independent variable show the residual errors (i.e., differences between predicted and
actual disease intensity) from transformed regression models vs. time in logistic and Gompertz models, respectively. Graphs
inrows 1, 2, 3, 4, 5 are related to cultivars Boolani, Chamran 2, Kavir, Ofoq, and Star, respectively in 2015-16.
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Figure 5 Column A and B - Linearized graph display model-transformed disease intensity data points against time,

and predicted regression lines for linearized Logistic and Gompertz models, respectively. Column C and D - The
back-transformed graph shows predicted regression lines for Logistic and Gomperts growth models, respectively,
with predicted y* values back-transformed to proportions and plotted with original disease intensity assessments.
Graphs in rows 1, 2, 3, 4, 5 are related to cultivars Boolani, Chamran 2, Kavir, Ofoq, and Star, respectively in

2015-16.
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Figure 6 Column A - Disease progress curve (nontransformed disease intensity y, expressed as proportions, vs. time t).
Column B - The rate curve (the estimated rate of change of nontransformed y between pairs of times (dy/dt) against
time t. Column C and D- The residuals vs. independent variable show the residual errors (i.e., differences between
predicted and actual disease intensity) from transformed regression models vs. time in Logistic and Gompertz
models, respectively. Graphs in rows 1, 2, 3, 4, 5 are related to cultivars Boolani, Chamran 2, Kavir, Ofoq, and
Star, respectively in 2016-17.
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Figure 7 Column A and B - Linearized graph display model-transformed disease intensity data points against time,
and predicted regression lines for linearized Logistic and Gompertz models, respectively. Column C and D - The
back-transformed graph shows predicted regression lines for Logistic and Gomperts growth models, respectively,
with predicted y* values back-transformed to proportions and plotted with original disease intensity assessments.
Graphs in rows 1, 2, 3, 4, 5 are related to cultivars Boolani, Chamran 2, Kavir, Ofoq, and Star, respectively in
2016-17.
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Table 4 The results of measuring D and LIP indexes of Wheat leaf rust (WLR) Puccinia triticina Eriks during the

2015-16 and 2016-17 growing seasons.

Days after symptoms ~ 2015-16 cropping season 2016-17 cropping season

appearance 2P X D LIP  Pattern® S X D LIP Pattern

12 231.9 259 89 1.30  Aggregated 308.5 311 9.9 1.20 Aggregated
19 190.8 483 39 1.00  Aggregated 278.7 59.7 4.6 1.06 Aggregated
26 112.0 69.0 16 1.00  Aggregated 173.3 84.8 2.0 1.01 Aggregated
33 36.1 735 04 0.99 even 90.2 47.6 0.5 0.99 Even

a. The dates in which the severity of the disease is taken based on the modified index of Cobb (Peterson et al., 1948), b. The variance of severity
data., c. The means of severity data, d. The spatial patterns of WLR in each date, D: Dispersion Index, LIP: Lloyd’s Index of Patchiness.

Discussion

According to global distribution maps of the
disease, Iran, especially the southwest (Khuzestan
province), is one of the key lands of WLR disease,
and symptoms of the disease occur every year in
different areas (Chai et al., 2016; Roelfs et al.,
1992). In Iran, this disease placed after the yellow
rust and was reported as an epidemic in different
parts of the country (Torabi et al., 1995;
Mohammadi et al., 2023), but in Khuzestan
province is primarily important (Dadrezaei and
Torabi, 2016; Dadrezaei and Nazari, 2015;
Pouralibaba et al., 2021). Due to favorable
weather conditions and the prevalence of rust, this
province, one of the country's most important
hubs of wheat production, was selected as the
main monitoring center for WLR in Iran. This
study proves previous studies about disease
distribution in Khuzestan province. According to
regional monitoring of WLR in Khuzestan
Province from 2014 to 2017 (Hasanzadeh et al.,
2019), depending on climate conditions and
geographical situation, the first symptom of the
disease occurred in late March until mid-
February irregularly between GS39 to GS57
growth stages. However in experimental plots, the
disease has been epidemic in both years and
developed significantly until the end of the
growth season, which demonstrated the
importance of the presence of external inoculation
sources and the inherent potential of this province
for the prevalence of large epidemics. In
compound-interest diseases such as WLR, unlike
the simple-interest ones, primary inoculum did
not have any significant effect on the epidemic
establishment, and disease results from hundreds
of parallel secondary cycles that develop
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epidemics (Agrios, 2005). Proper management of
this disease requires an accurate understanding of
disease development and epidemiology (Chen,
2017). Using epidemiological studies, it is
possible to present how a disease in the host
population and the effect of the disease pyramid
factors in its development leads to valuable and
effective strategies for disease management (Xu,
2006). One of the main aspects of
epidemiological studies is a temporal analysis of
disease to evaluate factors affecting disease (Xu,
2006), which is considered several decades later
in quantifying disease progression. For instance,
Ware et al. (1932) and Ware and Young (1934)
presented curves demonstrating the effect of
cultivar resistance and fertilizer treatment of flax
wilt dynamic. Wander Plank also applied
parameters of disease progress models for
treatment comparison of disease development
(Xu, 2006). Each curve, drawn based on disease
intensity data, presents a dynamic image of
disease in time and is called the “signature of” an
epidemic (Campbell and Madden, 1990). The
regression statistics of this research showed that
every disease progression model fitted properly
on all studied cultivars with WLR disease
intensity data. However, as expected, disease
progress and rate curves fit properly with the
logistic and Gompertz models. The disease
progress curve had a sigmoid shape, and the rate
curve had an obvious inflection point,
characteristic of the logistic and Gompertz
models. Zadoks (1961) showed that the logistic
model is the best for predicting wheat yellow rust
as a polycyclic disease. Most of the foliage and
airborne diseases, such as septoria leaf blotch of
tomato (Parker et al., 1997), Cercospora leaf
blotch of corn (Ward et al., 1997), and sugarcane
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Cercospora leaf blotch (Madanian et al., 2004) are
the polycyclic and logistic model presented the
best fit for describing the epidemic. Also,
Gompertz  model compatibility, previously
affirmed in the peach rusty spot (Furman et al.,
2003), citrus canker (Gottwald et al., 1989),
grapevine leafroll-associated virus 3 (Habili and
Nutter, 1997), and pea powdery mildew (Viljanen
-Rollinson et al., 1998). According to our results,
there is no direct relationship between cultivar
resistance/susceptibility and appropriate models,
as in both years, logistic and Gompertz models,
with a little difference, fitted properly with the
disease intensity data of all cultivars. Noteworthy,
the biological nature of the disease could not
decisively determine the special model with
appropriate statistical data to describe a disease
epidemic. For instance, fusarium head blight of
wheat (FHB), behaves as a polycyclic disease in
nature while due to the special time/phenology
stage (anthesis) to infection on wheat, known as a
monocyclic disease (Wiese, 1991). So, the
epidemiological study’s results showed that FHB,
like most polycyclic diseases, fitted with the
logistic and Gompertz models instead of the
monocyclic disease model (monomolecular)
(Taiely et al., 2006). Therefore, the same fitness
of disease intensity data with monocyclic and
polycyclic disease models and the compatibility
of the polycyclic disease with the monocyclic
disease model and vice versa is possible
(Arneson, 2001).

The model aims to fit with disease severity data
and determine the proper one by using the
estimated parameters (r and yo) to formulate
equations to determine disease intensity at a
specific time. This compares epidemics to
developed  cost-effective  and  integrated
management programs (Xu, 2006). Due to a
diverse unit of model parameters, it is essential to
analyze epidemics with the same models (Nutter et
al., 2015). In the case of the polycyclic disease
epidemic, the impact of all affecting factors on the
disease pyramid is reflected in the rate of disease
progression. The comparison of changes in the rate
of two epidemics could be related to the special
change during that epidemic. The modified line
rate of Gompertz and the logistic model differ
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regarding plant disease. In this study, in the
resistant cultivar Chamran 2, re was 0.053 and
0.051in the 2015-2016 and 2016-2017 crop
seasons, respectively. Also, in susceptible cultivar
Boolani, it was 0.09 in 2015-2016 and 0.1 in 2016-
2017. In Chamran 2, the resistant cultivar, r. was
0.121in the 2015-2016 crop season and 0.12 in
2016-2017; in Boolani, the sensitive cultivar, r.
was 0.144 in 2015-2016 crop season and 0.139 in
2016-2017. Gompertz model rate is lower than 1 in
most diseases (rG < 0.1) (Berger, 1981); as the rate
of 0.961 was recorded for asparagus Cercospora
blight (Conway et al., 1987) and 0.008 for dutch
elm and yokka rust disease (Berger, 1981). In
canola, Sclerotinia stem rot epidemic in Iran rg
ranged from 0.003 to 0.077 (Aghajani and Safaie,
2010). According to the Gompertz model, the rate
of disease progress in the susceptible cultivar,
Boolani, was almost twice as resistant cultivars,
Chamran 2. Still, in the logical model, it was lower
than Gompertz.

The first step to understanding the ecological
process of disease is identifying their spatial
pattern (Fortin et al., 2002). The spatial pattern
of pathogen, vector, and disease distribution
demonstrated the effect of environmental
heterogeneity on pathogen dispersion, which
could be depicted by statistical analysis.
However, when spatial pattern analysis aims to
explain the basic process according to outcomes,
only statistical models might not be enough.
Still, such methods could be used to formulate
ecological theories that no statistical tools could
evaluate- and also to affirm the basic processes
(Madden, 2006). The information on the
distribution pattern of disease is important for
several reasons. Knowing the aggregative degree
of disease pattern directly helps determine
required and effective sampling units (based on
infection rate) to evaluate the average necessary
intensity and establish proper management
strategies. In addition, the released distribution
pattern gives direct insight into the distribution
mechanism and the spatiotemporal dynamic of
disease, which is essential in defining optimal
control tactics (Stevenson, 2015).

In this study, the aggregative spatial disease
pattern obtained during two experimental years
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was consistent with a single pathogen life cycle.
This pattern represents the pathogen's infectious
and polycyclic behavior and demonstrates that the
pathogen has a vector (Madden et al., 2007).
Wheat rusts such as WLR, a polycyclic disease
could be distributed rapidly in optimal conditions.
After a 7-10-day latent period, each uredinium
could produce 30,000 spores daily for 20 days
(Singh et al., 2002). This explanation showed the
explosive nature of the disease in favorable
environmental conditions and the ability to
transfer to distant areas by wind, animals, and
human activities (Roelfs et al., 1992).

The wheat rust epidemic is affected by three
components of an epidemic triangle similar to
other diseases: pathogen, host, and environment.
In the presence of the pathogen and susceptible
host, environmental conditions play a key role in
the effectiveness and severe occurrence of the
epidemic (Chen, 2005). In several studies, the role
of the vector as one component of environmental
conditions was evaluated to create a spatial
pattern and physical distribution of spore or
disease agents at far and near distances. Also, the
actual data were used to validate theoretical
predictions of spore transformation (Teferi,
2015). Hilker et al. (2017) applied mathematical
models to analyze the dispersion of maize lethal
necrosis virus disease agent on maize in Africa to
predict the management effect on disease agent
and vector distribution. In another experiment, the
incidence of an aggregative pattern of bacterial
wilt in rows of a commercial farm demonstrated
the effect of irrigation on disease extension
(Wimer et al., 2011).

Today's researchers benefit from parameters
such as traveled distance, temperature, relative
humidity, direction, and wind speed to determine
and define spatial patterns of the pathogen at
lower distances. Such information helps
understand the spore dispersion in long distances,
model distribution routes, and predict the start of
an epidemic (Ojiambo et al., 2017). Tracing the
possible route of the rust and predicting the
spreading path could be performed according to
maps and the direction of air flows. The main
masses and air flows affecting Iran included: 1-
Sudan perception system 2- Mediterranean moist
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air mass 3- Siberian cold air mass 4- Southern
warm and wet masses (active in summer) 5- Saudi
Arabian dry and warm air mass (Dadrezaei et al.,
2018). Mediterranean and Sudanese air masses
play a critical role in the transmission and
distribution of urediniospores in wheat farms. The
combination of Sudanese and Mediterranean low-
pressure air mass causes the strengthening of the
Sudanese low pressure and receiving moisture
from the Red Sea, Arabian Sea, and the Persian
Gulf, resulting in heavy rain in this region. When
the direction of air flows and the rise and the
motion of rusts are examined carefully, the
conformity of rusts movement direction and air
flows is observed. Mediterranean air mass
affected wheat fields during growth season. Also,
in the years when the Sudanese masses are acting,
rusts are more active and induce regional or global
epidemics due to humidity and heavy rain. During
these days, rusts occur severely in the south and
southwest Iran from 2012 to 2014. Regional
monitoring of WLR disease in southwest Iran
(Khuzestan Province) (Fig. 8) depicted the
activeness of this disease according to the route of
Sudanese air Mass (Hasanzadeh et al., 2019). The
results of epidemiological studies of wheat rusts
in the past decade have revealed that the
Khuzestan province has always been one of the
first areas to experience a rust outbreak
(Dadrezaei et al., 2018).

Considering to the air masses way and
reviewing the history of the rust epidemic in
Iran, like the trans-regional dispersion of
yellow rust in an epidemic of 1980 in the
CWANA region (North Africa, Central Asia,
and West Asia countries), it could be found that
it is the same way which caused pathogenic
yellow rust race spore transformation to
resistant wheat cultivars carrying a resistance
gene Yr9 in the 1990s (Dadrezaei et al., 2018).
The area under the cultivation of these cultivars
was more than 20 Million hectares, and the
activity of both air masses caused the yellow
rust epidemic in CWANA region and induced a
1 billion dollar loss. In 1993, wheat yield loss
in Iran due to this epidemic was 1.5 million
tons, estimated to be 1 million tons annually in
1995 (Torabi et al., 1995).
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Figure 8 GIS map shows the severity of symptoms (%) and pattern of the spread of wheat leaf rust disease in
Khuzestan province in 2015-16 and 2016-17 growing years. Areas with different severity of symptoms are shown

in different colors.

The emergence of a new race of cereal rust by
weather trends from Northeast Africa to Iran
similar to the yellow rust race with pathogenicity
for wheat cultivars carrying Yr27 gene was a
typical example of the continental motion of this
disease (Afshari, 2004). Although the progress
direction of rusts is not observable, the transition
and diffusion path of rust spores from
northeastern Africa and West Asia by Sudanese
airflow could be compared by dust motion
pictures and cloud masses in this route, which
occurred during recent years.

Considering the climate conditions in
Khuzestan province, especially in these two
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years, it is understood that 2015-16 is more
conducive than 2016-17 with a very slight
difference. However, the compressive view of the
epidemic that occurred in both years concludes
that the weather in Khuzestan Province is
favorable for this disease. Furthermore, because
of the aggregative spatial pattern of WLR, in the
case of Sudanese and Mediterranean perception
system entrance and cultivating the susceptible
cultivar, transmission of spores from internal and
external infection spots with system motion is
possible. The heavy epidemic will happen and
could impose severe damage due to high moisture
content and heavy perception. Therefore, the
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logistic and Gompertz growth models for
predicting disease development during the season
and management strategies mainly established
based on resistant cultivars and fungicides
(Hasanzadeh et al., 2020) are needful and
necessary.
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