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Abstract: The two-spotted spider mite (TSSM) Tetranychus urticae Koch is 

one of the most destructive mites in many plants due to its characteristics, such 

as high reproductive potential, short life cycle, and feeding method. Excessive 

use of chemical compounds without considering environmental factors has led 

to high residual toxins in food products and resistance to pesticides. 

Temperature is an essential non-living factor that affects various biological 

aspects of pests and pesticide toxicity levels. In this study, the interaction of 

different temperatures (15, 20, 25, and 30 °C) in the photoperiod (16L:8D h) 

was investigated on the toxicity of spiromesifen on the adult TSSM. Then the 

levels of α-esterase and glutathione S-transferase activity were measured. The 

highest LC50 was recorded at 15 °C after 24 h (LC50 = 21.269 mg ai/l), and the 

lowest value corresponds to 30 °C after 48 h (LC50 = 0.860 mg ai/l). The level 

of toxicity also increased with a temperature increase, so the toxicity was 

recorded 3.6 folds higher at 30 °C compared to 15 °C. The α-esterase and 

glutathione S-transferase activity also increased with an increase in the 

temperature, but this increase was significant only for esterase activity. The 

relationship between temperature and the power of pesticide toxicity in areas 

with different daily and controllable temperature changes can effectively 

provide a valuable proposal to reduce pesticide consumption and increase the 

efficiency of pest control. 
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Introduction12 

 

After insects, acari are known as the most critical 

arthropods in human life. Spider mites are one of 

the most important pests of plants that have 

become very important in the world in recent 

years. Two-spotted spider mite (TSSM), 

Tetranychus urticae Koch (Acari: 

Tetranychidae), damages many agricultural and 
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ornamental plants. For spider mites of the world, 

1300 species have been described. TSSM is one 

of the most polyphagous species among the spider 

mite species known worldwide (Khodayari and 

Hamedi, 2021).  

Synthetic pesticides are one of the essential 

tools to keep the pests population below the 

economic injury level (Van Leeuwen et al., 

2015). Spiromesifen is one of the derivatives of 
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the tetronic acid group that works in a new way 

(Acetyl-CoA-carboxylase inhibitor). This 

pesticide destroys the cell membrane by 

blocking fat production and reduces energy 

synthesis. Also, the main feature of this pesticide 

is to diminish pest resistance to other chemicals 

with a different mechanism (Cloyd et al., 2006). 

High reproduction potential, short life cycle, 

and excessive use of chemical pesticides to 

control the TSSM cause the emergence of 

resistance to many chemical pesticides after 

several applications and also the appearance of 

high levels of residual toxins in food products 

(Stumpf and Nauen, 2001; El Kady et al., 2007; 

Hamedi, 2022). 

Temperature changes can directly affect the 

fate of chemicals by using different mechanisms, 

such as increased volatility, the solubility of 

substances, and increasing decomposition 

(Noyes et al., 2009). Temperature is essential in 

pesticide resistance (Yang et al., 2018). In 

addition, the temperature can be effective in the 

amount of absorption and excretion of toxins by 

affecting the amount of nutrition, metabolism, 

and movement activity of the living organism 

(Jegede et al., 2017).  

The relationship between temperature and 

pesticide toxicity in areas with different daily 

and controllable temperature changes is 

fascinating and vital to providing valuable 

suggestions regarding the use of temperature in 

reducing the use of pesticides and increasing the 

efficiency of pest control. 

The TSSM is a critical pest in most fields and 

greenhouses and deals with different 

temperatures during the day. Therefore, this 

study aims to investigate the effects of 

temperatures on the toxicity of spiromesifen and 

the changes of esterase and glutathione S-

transferase enzymes on this mite. 

 

Materials and Methods 

 

Rearing of TSSM 

The TSSM was collected from the cucumber 

(Tehran, Iran) and transferred to the red bean 

plants Phaseolus vulgaris L. var. Akhtar. TSSM 

was reared on bean leaves at 15, 20, 25, and 30 

°C, photoperiod of 16L:8D h, and 60 ± 5% R. H. 

without using any pesticides.  

 

Chemicals 
The reduced glutathione (GSH) (Sigma); α-

naphthyl acetate substrate (Sigma); 1, Chloro 2,4 

dinitrobenzene (CDNB) (Merck), Fast blue RR 

(Merck) and spiromesifen (Oberon® 240 g/l SC) 

(Bayer Crop Sciences) were used in this research. 

 

Adulticide bioassays 

Triton X-100 (0.1%) was used for better pesticide 

emulsification in water. Preliminary tests were 

used to determine lethal concentrations between 

20 and 80% mortality. Then, concentrations were 

tested using logarithmic intervals between them 

(Scharf, 2008). 

Leaf disks with a diameter of 3 cm were 

prepared from the bean leaves, then placed on 

cotton pads soaked in distilled water in a Petri 

dish (diam. 6 cm) so that the lower surface of the 

leaf was facing up. Twenty adult female mites 

(2-3 days old) were placed with a soft brush on 

each leaf disc. They were left for 30 min for the 

mites’ settlement. Then leaf discs with mites 

were immersed in the desired concentrations for 

5 s and placed on the cotton pads inside the Petri 

dish. The Petri dishes were kept at room 

temperature for 20 min, and after the leaves were 

dried, they were transferred to the experimental 

temperatures. The mortality rate was recorded 24 

and 48 h after the experiment. Mites that did not 

show movement when stimulated by the brush 

were considered dead (Roh et al., 2011). Each 

treatment was tested at five replications. Finally, 

LC50 values of the spiromesifen were calculated 

at each temperature. 

After bioassays, the susceptibility of TSSM 

at different temperatures was compared at four 

constant concentrations of 2.4, 7.2, 12, and 16.8 

mg ai/l 24 and 48 h after exposure. 

 

Biochemical experiments 

Adult female mites (2 to 3 days old) reared in 

the mentioned temperature conditions were 

treated with 1.75 mg ai/l spiromesifen by the 

leaf disc method. Distilled water and Tween 

X100 (0.1%) were used for the control 
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treatment. After 48 h, alive mites were 

transferred to a microtube, and the 

detoxification enzymes were measured. 

Esterase and GST activity was measured by 

Van Asperen (1962) and Habig et al. (1976) 

methods. The experiment was performed in four 

replication, and 100 adult female mites (2 to 3 days 

old) were used for each repetition. The protein 

concentration of each sample was measured using 

the Bradford method (Bradford, 1976). 

 

Data analysis 

The relative median potency test (RMP) was 

evaluated by comparing the significant 

differences between the LC50s of the two 

treatments. LC50 values were used from the 

method of Finney (1971). In case of losses in 

the control treatment, they were corrected using 

Abbott’s formula (Abbott, 1925). These 

calculations were done with SPSS 20 software. 

The effect of concentration, temperature, and 

their interaction was statistically analyzed by the 

two-way factorial tests using the Univariate 

GLM method. If significant, the treatments were 

compared using Tukey’s honestly significant 

difference (HSD) tests at P ≤ 0.05. Before 

statistical analysis, the data’s normality 

(mortality percentage) was checked using 

MINITAB14 software and normalized using the 

angular arcsin relationship (Arcsine) if needed. 

Calculations were done with SPSS 20 software. 

SAS software and Tukey’s test method were 

used at the 5% level to compare the mean 

interaction effects. Enzyme biochemical data 

were analyzed using PrismDemo software. 

 

Results 

 

The mortality of the spiromesifen on the adult 

female mites was assessed 24 and 48 h after 

treatment. The results indicated that an increase 

in temperature causes an increase in the 

mortality rate. Based on the values of LC50, the 

highest and lowest mortality was 1.757 mg ai/l 

at 30 °C and 21.269 mg ai/l at 15 °C, 24 h after 

exposure. The level of mortality also increased 

as time exposure increased. Therefore, 48 h after 

exposure, the LC50s changed to 0.860 mg ai/l at 

30°C and 10.679 mg ai/l at 15 °C (Table 1). 

The relative median potency (RMP) test 

showed that the changes in temperature from 15 to 

30 °C caused the highest sensitivity (RMP = 12.42) 

of the adult female mites to the pesticide (Table 2). 

The results of Table 3 show that the main 

effects of treatments (concentration and 

temperature) and their interaction effects on the 

mortality rate of spiromesifen were significant at 

the 1% probability level. In this regard, the 

mortality rate increased significantly with 

increasing temperature and exposure time for all 

tested concentrations. So the highest mortality 

rate was 93.62% at 30 °C with 16.8 mg ai/l after 

48 h, and the lowest value was 13.2% at 15 °C 

with 2.4 mg ai/l and 24 h exposure time (Fig. 1). 

 
Table 1 Toxicity of spiromesifen against the adult female of Tetranychus urticae after 24 and 48 h. 
 

Temperature 
(°C) 

Time  
(h) 

n P-value 2 Slope ± SE LC50 (mg ai/l) 
(95% confidence limits) 

LC90 (mg ai/l) 
(95% confidence limits) 

30  24 524 0.903 1.589 1.047 ± 0.129 1.757 

(1.353 – 2.253) 

29.413 

(16.566 – 73.200) 

30  48 457 0.906 1.559 1.258 ± 0.152 0.860 
(0.688 – 1.090) 

8.978 
(5.384 – 20.041) 

25  24 485 0.683 2.289 0.823 ± 0.128 8.105 
(5.868 – 11.689) 

293.833 
(115.289 – 1600.108) 

25  48 502 0.978 0.781 0.877 ± 0.093 2.223 

(1.616 – 3.025) 

64.216 

(34.450 – 159.981) 

20  24 584 0.602 3.641 0.838 ± 0.113 13.002 

(9.681 – 18.775) 

439.541 

(183.177 – 1919.703) 

20  48 550 0.422 4.951 0.964 ± 0.096 3.770 
(2.858 – 4.928) 

80.554 
(46.866 – 175.209) 

15  24 492 0.751 1.918 2.143 ± 0.356 21.269 
(18.541 – 26.303) 

84.311 
(54.837 – 193.895) 

15  48 378 0.516 2.282 2.416 ± 0.417 10.679 

(8.929 – 12.129) 

36.218 

(27.366 – 62.439) 
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Table 2 Comparison of LC50 values of spiromesifen between different temperatures on Tetranychus urticae by 

relative median potency after 48 h. 
 

Temperature (A/B) RMP temperature 1 95% confidence limits Significance 

Lower - Upper 

15 °C/ 20 °C   2.833 1.050 - 6.329 * 

15 °C/ 25 °C   4.804 1.467 - 13.910 * 

15 °C/ 30 °C 12.417 4.335 - 42.330 * 

* indicate significant differences between the two groups based on lower and upper 95% confidence limits. 
1 Relative Median Potency: LC50 (temperature A) / LC50 (temperature B). 

 
Table 3 Analysis of variance of mortality of Tetranychus urticae by spiromesifen after 48 h. 
 

Source of variations df MS F P-value 

Concentration (C)   3 4066.934 373.455 < 0.0001 

Temperature (T)   3 5664.282 520.135 < 0.0001 

C × T   9   123.800   11.368 < 0.0001 

Error 64     10.890   

CV = 4.685     

 

 

 

 

 

 

Figure 1 Mean (± SE) mortality of different concentrations of spiromesifen on Tetranychus urticae at different 

temperatures (15, 20, 25, and 30 °C) after 24 and 48 h. Means followed by the same letters in each line are not 

significantly different (Tukey’s test, P  0.05). 
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Esterase and GST Activity 

Esterase and GST activity of adult female mites 

at 1.75 mg ai/l of spiromesifen are shown in Fig. 

2. The results showed that an increase in 

temperature causes a significant increase 

(F=12.13; df = 3,7; p < 0.01) in the α-esterase 

activity so that this activity increased 2.4 folds 

when the temperature increased from 15 to 30 

°C. There were no significant differences in GST 

activity with increasing temperature (Fig. 2).  
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Figure 2 Esterase and GST activity of Tetranychus urticae at different temperatures with a concentration of 1.75 

mg ai/l spiromesifen 48 h after exposure. * P < 0.05, ** P < 0.01.  

 

Discussion 

 

The toxicity of pesticides depends on the 

chemical formula, dosage, growth stage of the 

pest, and microclimate (Auger et al., 2003). 

Increases in temperature and changes in climate 

conditions can directly affect the fate of 

chemical pesticides through mechanisms such as 

increased volatility, solubility, and degradation 

(Noyes et al., 2009). 

Temperature changes strongly affect the 

effectiveness of spiromesifen in this study. At 

each concentration, the toxicity increased 

significantly with temperature changes. For 

example, by changing the temperature from 15 to 

30 °C at a high concentration (16.8 mg ai/l), the 

toxicity increased about 1.3 folds, and at a low 

concentration (2.4 mg ai/l), it was increased by 

2.7 to 4.1 folds. In some cases, the temperature 

increase from 15 to 30 °C can increase mortality 

by more than 12 folds (Table 2). 

Exposure of living organisms to chemicals and 

an increase in temperature may increase 

sensitivity to chemicals and decrease heat 

tolerance, which may be due to the increased 

metabolic activity of chemicals under increased 

temperature (Slotsbo et al., 2009). In the reports 

of Heugens et al. (2001) and Sokolova and 

Lannig (2008), it was mentioned that when living 

organisms are exposed to high temperatures and 

chemicals, their sensitivity to chemicals 

increases. Studies showed that the resistance 

levels of diamondback moths in spring and 

autumn are much higher than in summer (Wu and 

Jiang, 2004). In the research of Askari Saryazdi et 

al. (2013) and Sarbaz et al. (2017). The value of 

LC50 of spiromesifen on the TSSM was recorded 

as 26.39 and 5.95 mg ai/l, respectively. The 

difference in bioassay compared to our results 

may be due to the difference in pesticide 

application and duration of exposure. Our studies 

show the very functional role of temperature on 

the effect of spiromesifen on the TSSM. From the 

results, it can be concluded that by increasing the 

temperature to a particular value, if the 

environment and the host plant have the 

conditions of increasing temperature, the 

effectiveness of the pesticide can be significantly 

Temperature (C) 
Temperature (C) 
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increased. It could be concluded that the role of 

temperature is more visible at low concentrations 

than in high concentrations (Cho et al., 1999). 

The mechanism of the effect of temperature on 

the rate of pesticide penetration and excretion, as 

well as pesticide activity, is very complex. The 

reduction in toxicity at low temperatures may be 

due to several reasons, including the degradation 

of the pesticide (Elshazly, 2015) as well as less 

activity of the pest at low temperatures. Other 

factors, including the slower penetration of the 

pesticide through the cuticle and the slower 

transfer to the target site inside the pest’s body, 

are effective in slowing down the activity at low 

temperatures (Cagan, 1998; Garcia et al., 2011; 

Ismail et al., 2015; Jegede et al., 2017). Relatively 

low or high temperatures are responsible for 

various physiological stress responses in mites. 

Thermal stress is caused by increased active 

oxygen, which causes oxidative damage (Stamou 

et al., 1995). Mites at high temperatures have 

more dynamic movement and are exposed to a 

higher dose of acaricide, which is detected by 

higher oxygen consumption. 

The amount of α-esterase activity for 

spiromesifen increased significantly with 

increasing temperature. Assessment of tetronic 

acids on T. urticae and Panonychus ulmi 

indicated the induction of metabolic resistance 

by monooxygenases P450s and esterase as 

general detoxifying enzymes (Demaeght et al., 

2013). Our findings showed that the α-esterase 

in control increased with increasing temperature. 

Due to feeding on leaves and having special 

chemicals (allelochemicals) in the control mites, 

esterase enzymes for neutralization have 

probably increased (Durak et al., 2021; Hung et 

al., 1990; Mullin et al., 1982). In our research, 

the α-esterase was more affected by the 

spiromesifen than the glutathione S-transferase. 

The esterase may affect the resistance of this 

pesticide in the future. 

 

Conclusion 

 

Many types of research have been done on the 

impact of temperature on the power of pesticide 

toxicity (Auger et al., 2003; Elshazly, 2015; 

Everson and Tonks, 1981; Ismail et al., 2015; 

Jegede et al., 2017; Subramanyam and Cutkomp, 

1987); however, there is a lack of data on TSSM 

in response to spiromesifen in the changing 

temperature. The study showed that temperature 

changes could affect pesticide toxicity and 

detoxification enzyme activity. Therefore, by 

adjusting the temperature and determining the 

appropriate spraying time in protected areas with 

controllable temperatures, higher pest control 

efficiency can be achieved by reducing pesticide 

use.  
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سیفن روی کنه تارتن اسپیرومکشی تأثیر دما بر فعالیت کنه

 Tetranychus urticaeای دولکه
 

 پور*جمال، اعظم میکانی، محمد مهرآبادی و سعید محرمیمهدی 

 

شناسی کشاورزی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، حشره گروه

 ایران.

 moharami@modares.ac.ir مسئول مکاتبه: نویسنده الكترونیكي پست

 1401 بهمن 17 ؛ پذیرش:1400 بهمن 4دریافت: 

 

-دلیل ویژگیبه Tetranychus urticae Kochای کنه تارتن دولکه :چکیده

هایی مانند پتانسیل تولیدمثلی بالا، چرخه زندگی کوتاه و 

ها در بسیاری از گیاهان ترین کنهروش تغذیه یکی از مخرب

از حد از ترکیبات شیمیایی رود. استفاده بیششمار میبه

مانده بدون درنظر گرفتن عوامل محیطی منجر به افزایش باقی

ها شده کشموم در محصولات غذایی و مقاومت در برابر آفتس

های است. دما یک عامل غیرزنده ضروری است که بر جنبه

-ها تأثیر میکشآفت مّیتسمختلف بیولوژیکی آفات و سطوح 
و  25، 20، 15گذارد. در این مطالعه، اثر متقابل دماهای 

ساعت  8ساعت روشنایی و  16در دوره نوری  درجه سلسیوس 30

بررسی بالغ های روی کنهاسپیرومسیفن  مّیتستاریکی روی 

ترانسفراز -Sشد. سپس سطح فعالیت آلفااستراز و گلوتاتیون 

درجه سلسیوس پس  15در دمای  50LCگیری شد. بالاترین اندازه

 30مای ترین مقدار در د( و کمmg ai/l 21.269=  50LCساعت ) 24از 

( مشاهده شد. mg ai/l 0.860=  50LCساعت ) 48درجه سلسیوس پس از 

 مّیتسنیز با افزایش دما افزایش یافت، بنابراین  مّیتسسطح 

درجه  15تر از برابر بیش 6/3درجه سلسیوس  30در دمای 

-Sاستراز و گلوتاتیون -α سلسیوس ثبت شد. فعالیت

یافت، اما این ترانسفراز نیز با افزایش دما افزایش 

طور دار بود. بهافزایش تنها برای فعالیت استراز معنی

ها در مناطقی با تغییرات دمایی قابل کشآفت مّیتسکلی قدرت 

ثیر ارزشمندی برای کاهش أثر تؤطور متواند بهکنترل می

 ها و افزایش کارایی کنترل آفات داشته باشد.کشمصرف آفت

 

-آلفا، اسپیرومسیفن، دما، Tetranychus urticae کلیدی: واژگان

 اس ترانسفرازاستراز، گلوتاتیون


