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Abstract: The residues of metsulfuron-methyl in the soil can be a negative
factor for the growth of susceptible crops to this herbicide. There are many
successful examples of the use of bacteria to increase crop yields and protect
plants against stress factors. The purpose of this work was to study the
possibility of reducing the phytotoxic effect of metsulfuron-methyl in the
soil on sugar beet using plant growth-promoting bacteria. Under greenhouse
conditions, sugar beet seeds and bacteria were simultaneously placed in soil
previously contaminated with methsulfuron-methyl. The weight of plants,
leaf area, amount of proline, malondialdehyde, and flavonoids were
measured. Suppression of the growth of young plants and oxidative damage
caused by herbicides have been recorded. When sugar beet interacted with
bacteria, Pseudomonas protegens DAL.2, oxidative stress caused by
herbicide was mitigated, and the mass of plants increased. Treatment with
bacteria against the background of herbicidal stress affected the dynamics of
the content of flavonoids and proline, which play a role in the anti-stress
reactions of plants.

Keywords: sugar beet, herbicidal stress, phytotoxicity, metsulfuron-methyl,
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Introduction weather conditions, agricultural practices, and
other factors, and there are no simple methods

The sulfonylurea class of herbicides is widely
used in agriculture due to their low danger to
humans and animals (including beneficial
insects), slow migration along the soil profile,
and low application rates. Often, grain crops are
treated with cheap sulfonylurea herbicides with
a long period of persistence in the soil
(Chkanikov et al., 2019).

The decomposition rate of persistent
herbicides can vary significantly depending on
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for monitoring them in the soil. The hydrolysis
half-life of the most slowly degradable
substances from the sulfonylurea class can be
more than 500 days in unfavorable soil-climatic
conditions (Sarmah and Sabadie, 2002). All this
makes it difficult to predict the residual amount
of metsulfuron-methyl and chlorsulfuron at the
time of subsequent sowing crops. The
consequence is the appearance of stress
symptoms in plants or even partial death of
crops sensitive to these herbicides in the year
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following the use of herbicides (Kaur and Brar,
2014; Mehdizadeh and Abadan, 2018). Sugar
beet is very sensitive to metsulfuron-methyl and
is used to test the bioactivity of sulfonylureas
(Szmigielski et al., 2018).

Sustainable agriculture implies the inclusion
of environmental factors in practice. For
example, it was obtaining benefits from the
relationship of plants with microorganisms.
There are many successful examples of the use
of bacteria to increase crop yields and protect
against stress factors (Singh, 2018). A new
development approach uses bacteria to reduce
herbicidal stress in cultivated plants. In the field
experiments, an improvement in the growth of
wheat and legumes under the action of bacteria
was observed against the background of the use
of herbicides of different classes (Ahemad and
Khan, 2010; Bourahla et al., 2018; Chetverikov
et al.,, 2021). Burkholderia cepacia strain
PSBB1 mitigated the toxicity of glyphosate and
enhanced the size, dry matter, symbiosis, seed
attributes, and nutritional contents of chickpeas
(Shahid and Khan, 2018). Further, B. cepacia
declined the levels of catalase (CAT),
peroxidase (POD), ascorbate peroxidase
(APX), glutathione peroxidase (GPX), and
malondialdehyde (MDA) contents at 4332
ug/kg soil glyphosate. Inthama et al. (2021)
screened soil bacteria that could degrade
paraquat and, at the same time, promote plant
growth. The cowpea plants grown in paraquat-
contaminated soil with Bacillus aryabhattai
showed longer root and shoot lengths. Another
study (Motamedi et al., 2022) was conducted to
evaluate the effect of native plant growth-
promoting bacteria isolated from the Medicago
sativa  rhizosphere, including  Serratia
rubidaea, Pseudomonas putida, Synorhizobium
meliloti, on M. sativa and soil microbiota in the
presence and absence of imazethapyr herbicide.
Bacterial inoculation, in most cases, increased
microbial population, plant biomass, and
antioxidant activities.

The purpose of our work was to study the
possibility of reducing the phytotoxic effect of
metsulfuron-methyl residues in the soil on sugar
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beet seedlings using plant growth-promoting
bacteria.
Materials and Methods

Bacterial strain

The bacterium strain Pseudomonas protegens
DA1.2 was isolated by the authors from the
rhizosphere of Trifolium repens L. growing on the
anthropogenic soil of the Republic of Bashkortostan
(Russian Federation) and deposited in the All-
Russian Collection of Microorganisms as VCM B-
3542D. It retains viability in the presence of
metsulfuron-methyl (0.1% by weight), synthesizes
indolyl acetic acid (0.87 mg/L) - a plant growth
stimulator (Table 1), fixes atmospheric nitrogen, and
shows antagonism to phytopathogenic fungi. Its
anti-stress influence and positive effect on wheat
yield were established in the field conditions of the
Southern Urals (Chetverikov et al., 2021). Bacteria
were cultivated in King B medium (King et al.,
1954) inan orbital shaker (160 rpm) at a temperature
of 28 °C for 72 h.

Table 1 Properties of Pseudomonas protegens DAL.
2 (Chetverikov et al., 2021).

Properties Values

Similarity of the 16S rRNA sequence (1410 bp),  P. protegens

GenBank MT267792 CHAQ(T), 100%
Nitrogenase activity, nmol C;H4/(h-ml) 21.30+0.22
Indoleacetic acid production, ng/ml 870+ 44
Solubilization of phosphates +

Antagonism:

Alternaria alternate, A. solani, Bipolaris
sorokiniana, Botrytis cirnea, Fusarium culmorum, +
F. gibbosum, F. graminearum, F. solani, F.
oxysporum, Rhizoctonia solani

Design of a laboratory experiment
In a laboratory experiment, the soil taken from
the arable layer of Chernozem Haplic was
treated with the herbicide Nanomet (active
ingredient - metsulfuron-methyl, 600 g/kg) at
concentrations of 0.1 mg/kg and 0.5 mg/kg of
soil, which corresponded to the recommended
dose of the herbicide and the excess of this dose.
Sugar beet Beta vulgaris L. subsp. vulgaris
variety Cascade 3 F1 was grown on a light site in
05 | wvessels filled with soil previously
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contaminated with the herbicide of various
exposure durations (3; 90; 180; 270, and 360 days).
Photon flux density was 190 pmol/(m?-s),
photoperiod was 14-h, the temperature was 24-
26 °C, and soil moisture was 60-80% of the total
moisture capacity. Half of the plants were treated
with the culture of P. protegens DA 1.2, diluted
with water to a titer of 2-10° cells/ml. Each variant
of the experiment was repeated in five vessels.

Growth parameters

Growth and weight parameters of shoots were
measured on the 10" day after spraying with
bacteria. For each variant of the experiment, 30
plants were used. Shoots were weighed on
analytical scales HR-250AZG (AND, Japan).
The total area of cotyledon and true leaves was
determined using the ImageJ program (National
Institutes of Health. MA, USA, imagej.net,
Accessed 30" May 2022).

Biochemical parameters

The amount of proline in the leaves was
measured using ninhydrin (Bates et al. 1973),
calibration was carried out using L-proline
(Sigma, United States). Malondialdehyde
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(MDA) in the leaves was assessed based on its
reaction with thiobarbituric acid (Costa et al.,
2002). It was chosen as a marker of oxidative
stress. All measurements were carried out on
fresh material.

The flavonoids in the leaves were measured
using the DUALEX SCIENTIFIC + device
(FORCE-A, France) according to the
manufacturer’s recommendations.

Statistical analysis

The data was analyzed in Statistica (Statsoft)
software (version 10). The significance of
differences between the averages was assessed by
ANOVA followed by Duncan’s test (p < 0.05).

Results

Growth parameters

In the control group of plants (on untreated
herbicide soil), the values of all indicators varied
slightly throughout the experiment. In the variant
treated with the liquid culture of P. protegens
DA1.2 increased weight by 27.6% (Fig. 1), and
the total leaf area increased by 16.7% was
observed (Fig. 2), compared with the control.
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+ DA1.2

Nanomet
0,1 mg/
kg

& Nanomet

= 0,1 mg/
= kg +
_-E., 0,08 DA1.2
-4
= 006 A Nanomet
’ 0,5 mg/
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0 DA1.2
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Days

Figure 1 Dynamics of the average weight of shoot of ten-day sugar beet plants depending on the use of bacteria
and the time since soil was treated with herbicide. Control - absence of any treatments; Nanomet - herbicide
treatment with Nanomet at the written dose; DA1.2 - treatment with bacterial culture of Pseudomonas protegens

DAL.2. A standard error is drawn for each value.
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Figure 2 Dynamics of the average leaf area of ten-day sugar beet plants depending on the use of bacteria and the
time since soil was treated with herbicide. Control - absence of any treatments; Nanomet - herbicide treatment
with Nanomet at the written dose; DA1.2 - treatment with bacterial culture of Pseudomonas protegens DA1.2. A

standard error is drawn for each value.

In the contaminated soil with Nanomet
herbicide at 0.1 mg/kg and 0.5 mg/kg (variants
“Nanomet - 0.1 mg/kg” and “Nanomet - 0.5
mg/kg”, respectively), the total leaf area and shoot
fresh weight decreased significantly compared to
the control. The weight and total area of beet
leaves in the “Nanomet — 0.1 mg/kg” variant
with the recommended dose of herbicide returned
to the level of control indicators only after 270
days. The more polluted methsulfuron-methyl
soil remained toxic even after one year.

In variants with combined treatment
(herbicide and bacterial strain P. protegens
DAl1.2), an increase in leaf area and
aboveground biomass of plants was observed.
This was also observed with a five-fold excess of
the herbicide dose in the variant “Nanomet - 0.5
mg/kg + P. protegens DA1.2” compared with
“Nanomet - 0.5 mg/kg”.

Biochemical parameters

There was no significant increase in MDA
and proline levels in untreated soil and on the
variant with sole P. protegens DA1.2 treatment
(not listed in the chart). On the contrary, in soil
contaminated with Nanomet herbicide at

528

concentrations 0.1 mg/kg and 0.5 mg/kg
(variants “Nanomet - 0.1 mg/kg” and “Nanomet
- 0.5 mg/kg”, respectively) a clear accumulation
of proline and MDA (Fig. 3.) was observed. In
“Nanomet - 0.5 mg/kg”, the content of MDA on
the third day was 182.4% higher than the
control. An increased MDA (88% higher than
the control) was observed even in the 12
month after the introduction of the herbicide
into the soil. When planting sugar beet in
“Nanomet - 0.1 mg/kg” on the 270" day after
contamination, there were no abnormal proline
and flavonoid levels compared to the control
(Table 2). The detox trend was observed for
“Nanomet - 0.5 mg/kg” too, but significantly
less due to initially higher concentrations of
contamination.

The treatment of samples containing
metsulfuron-methyl by bacteria resulted in the
amount of proline and MDA in beet leaves
falling to the control indicators at earlier
exposure periods. But even under the influence
of bacteria, the concentration of MDA in sugar
beet leaves normalized only if the amount of
herbicide introduced into the soil at the
beginning of the exposure was not excessive.
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Figure 3 The amount of proline and malondialdehyde (MDA) in beet leaves depending on the use of bacteria and
the time since soil was treated with herbicide. Control - absence of any treatments; Nanomet - herbicide treatment
with Nanomet at the written dose; DAL.2 - treatment with bacterial culture of Pseudomonas protegens DA1.2. A
standard error is drawn for each value. The concentration of proline is drawn with solid lines, and the concentration

of MDA is drawn with dotted lines.

Table 2 The concentration of flavonoids in beet leaves depending on the time since soil was treated with bacterial
culture of Pseudomonas protegens DA1.2 and Nanomet herbicide.

Days after treatment  Flavonoids content (conventional units)

Control DA1.2 Nanomet (mg/kg) Nanomet (mg/kg) + DA1.2
0.1 0.5 0.1 0.5
3 0.288 £ 0.020° 0.422 +0.011° 0.890 + 0.096¢ 0.822 +0.057¢ 0.880 + 0.058 0.705 + 0.013°
90 0.269 + 0.026° 0.387 + 0.016° 0.578 + 0.065° 0.723 +0.029¢ 0.722 +0.054¢ 0.82 + 0.06¢
180 0,269 + 0.007° 0.389 +0.031*  0.340 +£0.011° 0.433 £0.011° 0.364 + 0.005° 0.345 + 0.027°
270 0.277 £0.013* 0.384 + 0.020° 0.288 + 0.002? 0.37 £0.012° 0.293 £ 0.015° 0.445 + 0.028°
360 0.274 £ 0.008* 0.411 + 0.024° 0.280 £ 0.017* 0.367 + 0.022° 0.268 + 0.009° 0.308 + 0.033%

Average value * standard error (n = 6). Means with the same letters in each row are not significantly different (Duncan’s Multiple Range test,

p <0.05).

In the first days of the experiment and 90 days

amount of flavonoids
decrease.

in beet

leaves will

after its start, a high quantity of flavonoids was
recorded in beet plants grown on herbicide-
contaminated soil. This was more pronounced in
plants sprayed with growth-stimulating bacteria.
On the 90th day, the bacterial treatment further
intensified their accumulation. In the future, the

529

Discussion

In addition to growth characteristics, the levels
of MDA, proline, and flavonoids were chosen as
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stress indicators. This makes it possible to
comprehensively assess the condition of plants
and give numerical interpretations of the stress
level caused by exposure to herbicides, namely
the occurrence of oxidative stress. So, in the
variant with only bacterial treatment, an increase
in the weight and area of the leaves was not
accompanied by the accumulation of stress
molecules. On the contrary, it was observed that
in the soil contaminated with Nanomet
herbicide, the total leaf area and shoot fresh
weight decreased significantly, indicating
unfavorable conditions for the plant. In addition,
there was a clear accumulation of proline and
MDA. High levels of MDA indicate severe
oxidative damage in beet cells, which may affect
the yield and sugar content in the future.

Preparations based on sulfonylureas have the
same mechanism of action on plants sensitive to
them, which consists in blocking the functions of
the enzyme acetolactate synthase relative to the
synthesis of essential aliphatic amino acids
(Gerwick et al., 1993). Protein deficiency is
accompanied by various physiological disorders.
Several studies have shown that sulfonylureas
cause oxidative stress in plants (Gar’kova et al.,
2011; Souahi et al., 2016; Li et al., 2020).

The results of many previous studies indicate
that the main way to survive when spraying
herbicides with sulfonylureas is to possess a type
of acetolactate synthase that is not inhibited by
the herbicide. This path has been implemented in
creating transgenic varieties (Fartyal et al., 2018;
Guo et al.,, 2020), as well as in the natural
selection of herbicide-resistant weeds (Deng et
al., 2017). Measures not related to enzyme
replacement are too weak to mitigate the
phytotoxicity of large amounts of herbicide. The
amount of herbicides in the soil decreases weeks
or months after application and has less effect on
synthesizingthe synthesis of essential amino
acids in sensitive plants. This allows us to realize
the stimulating potential of bacteria, which is
confirmed by our data. The combination of
herbicide and bacterial strain P. protegens
DAL1.2 led in parallel to an improvement in the
growth parameters of beet plants and inhibition
of the formation of MDA in the leaves. It
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indicates the mitigation of herbicidal stress in the
presence of P. protegens DAL. 2.

The more pronounced resistance of sugar
beet to herbicide after treatment with bacteria
was not associated with lower susceptibility of
the enzyme targeted. And we have not
investigated the metabolism of metsulfuron-
methyl by beet plants. There are articles proving
the biodestruction of sulfonylureas of herbicides
in soil (Lozowicka et al., 2021). The use of
microorganisms is  discussed with  soil
reclamation or mitigation of the residual effects
of herbicides on following crops (Rainbird et al.,
2018). Although the bacterium can decompose
metsulfuron-methyl, we doubt that this is the
main reason for the decrease in phytotoxicity
since the time interval from the treatment with
bacteria P. protegens DA1.2 to seed germination
was too short for the initial biodegradation of the
herbicide in the soil. Another possible reason for
the stimulation of beet growth by bacteria
against the background of herbicide may be
better availability of nutrients for plants due to
the vital activity of bacteria. This ability is
characteristic of most plant growth-promoting
bacteria, including P. protegens DA1.2. Since it
manifests similarly in different soils and has
been described many times (Singh, 2018), we
have not explored it in detail.

Perhaps bacteria affect the manifestations of
oxidative stress induced by the herbicide. Tétard-
Jones and Edwards (2016) considered the
paradigm that microbes could ‘prime’ resistance
mechanisms in plants to enhance herbicide
tolerance by inducing the host’s stress responses to
withstand the downstream toxicity caused by
herbicides. In our study, changes in the dynamics
of the amount of flavonoids and proline in beet
leaves after spraying with microorganisms suggest
that bacterial metabolites may affect the regulation
of the stress response in plants. Proline is currently
considered a multifunctional molecule in plants.
Proteomic, genomic, and metabolomic studies
have revealed that proline, produced under
stressful conditions, can act as a compatible solute
in osmotic adjustment, a free radical scavenger, a
metal chelator, an activator of ROS detoxification
pathways, a cell redox balancer, a cytosolic pH
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buffer, a source of energy, a source of nitrogen and
carbon, a stabilizer of subcellular structures and
membranes including photosystem I, and can act
as a signaling molecule (Soshinkova et al., 2013;
Hossain et al., 2014; Siddique et al., 2018). In our
study, proline synthesis played a significant role in
the response of beet plants to herbicide exposure
and was one of the mechanisms of plant cell
protection. On the other hand, against the
background of  bacterial treatment, the
accumulation of proline was not so large.
Apparently, bacteria activate other plant defense
mechanisms, so the importance of proline
decreases.

The accumulation of flavonoids induced by
abiotic stresses has been observed by other
researchers (Fini et al., 2011; Agati et al., 2012).
Flavonoids act as antioxidants and represent a
secondary system of absorption of reactive
oxygen in plants. For example, they can restore
hydrogen peroxide coming from chloroplasts
into vacuoles (Fini et al., 2011). Enhancing the
synthesis of flavonoids by plants is considered a
promising area of research (D’Amelia et al.,
2018). We believe that the treatment with
bacteria improved the protective mechanisms of
plants when they were exposed to oxidative
stress. The increased amount of flavonoids can
be caused by the synthesis of indolyl acetic acid
(IAA) by bacterial cells since polyphenolic
compounds are regulators of auxin metabolism
(Peer and Murphy, 2007). In response to the
intake of IAA, the flavonoid level also increases.

Thus, when sugar beet interacted with
bacteria P. protegens DAL.2, herbicidal stress
was mitigated, the level of oxidative stress was
reduced, and the weight of the plant and the leaf
area increased, which provided the basis for
increasing yield and resistance to adverse
factors.

Conclusions

It was shown that after 12 months, the toxicity of
the herbicide based on metsulfuron-methyl for
sugar beet plants persisted, as evidenced by an
increased level of MDA. It is obvious that if the
recommended application doses are exceeded,
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the soil remains unsuitable for growing sugar
beet for more than a year. To mitigate herbicidal
stress on soils where herbicides based on
metsulfuron-methyl were previously used, a
strain of bacteria Pseudomonas protegens
DAL.2 is recommended. It was shown that this
strain reduces the phytotoxic effect of
metsulfuron-methyl at the biochemical and
macro levels and increases the resistance of
sugar beet to negative factors.
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