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Abstract: Environmental conditions can cause variation in morphology, 
behavior, and possibly epigenetic in the numerous species of the 
Gomphocerinae, especially in mountain habitats. Plasticity and changes in 
morphology in many of the species in this subfamily is caused by character 
segregation through the female choice of copulation that has produced various 
clines, sub-species or species groups. The variation and plasticity, as a result of 
environmental stress, besides morphology, affect physiology and epigenetics 
of many insect species. Environmental stress and female assortative mating 
might be accompanied by hybridization in populations, resulting in character 
divergence and speciation after a long period of time. Contemporary evolution 
and/or epigenetic inheritance may be a reason for their variation in acoustic 
and morphology of Gomphocerinae and the main factor in the present situation 
of difficulty in their classification. We review possible effects of 
environmental stress on plasticity, hybridization, and speciation by the 
appearance of endemic species. About half of the insect pest species have 
reduced their impacts as pests under global warming. The present insect pest 
situation in Iran is discussed.  
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1. Introduction12 
 
Geographical distribution of Gomphocerinae 
species is the source for variation, plasticity, 
and hybridization by environmental effects. 
Many endemic species and subspecies are 
created by acoustic divergence and sympatric 
speciation. The degree and direction of a trait is 
related to sexual dimorphism and female choice 
for copulation in insects (Robinson and Hall, 

                                                   
Handling Editor: Ali Asghar Talebi 
__________________________ 
* Corresponding author: saboori@ut.ac.ir 
Received: 16 September 2019, Accepted: 14 August 2020 
Published online: 03 October 2020 

2002; Mol et al., 2003; Tishechkin and 
Bukhvalova, 2009; Vedenina and Helversen, 
2009; Şirin et al., 2010, 2014; Stillwell et al., 
2010; Vedenina and Mugue, 2011). Therefore 
morphology alone is not enough to define many 
species of Gomphocerini and taxonomists are 
using sound characteristics for identification. 
Biodiversity studies of Gomphocerinae species 
are difficult due to a lack of knowledge for 
accurately identifying them in Iran without 
recording their songs and considering other 
factors causing variation in their populations 
(Sultana et al., 2013; Hodjat et al., 2019). 

More than 81 species of Gomphocerini 
grasshoppers are widely distributed in the world 
(Sergeev, 2011). In other words, Gomphocerini 
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is an assemblage of several similar grasshopper 
genera including Gomphocerus, Myrmeleotettix, 
Chorthippus, Pseudochorthippus, Stauroderus, 
and Aeropedellus (Jago, 1971; Defaut, 2011, 
2012, 2017). The genus Chorthippus has 229 
species and is divided into 2 or 3 subgenera 
Chorthippus (Altichorthippus) (20 species), 
Chorthippus (Chorthippus) (32 species), and for 
various authors (including orthoptera species file 
OSF), Chorthippus (Glyptobothrus) (57 species). 
The other species of Chorthippus are not 
classified into any subgenera. The Chorthippus 
(Glyptobothrus) biguttulus group has 12 species 
and C. binotatus group has two species. The 
genus Pseudochorthippus Defaut, 2012 with four 
species and two sub-species is closely related to 
Stenobothrus Fischer and Omocestus Fieber 
(subtribe Stenobothrina). 

Character changes in Gomphocerini species 
are a reaction to environmental factors that its 
stress may have influenced their genetics, 
epigenetics and external morphology (Laiolo et 
al. 2013). Neurohormones regulate all life 
processes in Gomphocerinae and insects in 
general (Perica-mataruaga et al., 2006; Hodjat, 
2006). Juvenile hormones (JHs) and the 
neurosecretory neurons (NSNs) secretions of 
corpora cardiac (CC), corpora allata (CA) and 
the brain (CNS) release methylsulfonylmethane 
(MSM) into the haemolymph. The gene 
expression is involved in C. biguttulus (L.) 
biogenic amines and chitin-binding. 
Transcriptomic methods of profiling show 
differential expression pattern in various stages 
of C. biguttulus life cycle and are described by 
Berdan et al. (2017), and Tatsuta and Butlin 
(2001). Gene expression pattern in C. 
albonemus change when pastures have been 
overgrazed in cases of food shortage (Qin et al., 
2017). The increased activity in locust is 
initiated after adipokinetic neurohormones are 
secreted (Hodjat, 2016). The reaction to 
acoustic communication in response to 
environmental conditions has been studied in C. 
biguttulus (Klappert and Reinhold, 2003). 
Species in the Chorthippus (Glyptopothrus) 
group communicate by special male songs to 
fend off competitors from the female, a 

behavior regulated by corpora cardiac 
secretion (Heinrich et al., 2012).  

Populations in various species of 
Gomphocerini may change their characteristics 
by choosing different selection routes. 
Differentially fixation of various characters on 
the population of a species may increase their 
adaptation and survival chance. The process of 
divergence in colour, morphology, and song in 
Pseudochorthippus parallelus (Zetterstedt) 
produces different traits by genetic 
polymorphism (Kohler et al., 2017). A long 
separation of their population increases their 
genetic distance, colour and morphological or 
acoustic diversification (Tregenza et al., 2000; 
Butlin and Hewitt, 2008; Vedenina and Mugue, 
2011; Monge, 2017). Subspecies and species 
group formations are the results of genetic or 
epigenetic changes in Gomphocerini (Smith and 
Ritchie, 2013; Noguerales et al., 2016), through 
assortative mating and environmental 
conditions (Klapper and Reinhold, 2003; 
Burggren, 2017). 

Rapid character divergence of grasshoppers 
in response to the male songs for copulation 
and other environmental factors are influencing 
taxonomists to clarify their classification. A 
new line of research on sound production, 
epigenetic, and stress has proved its influence 
on the Gomphocerinae species radiation 
(Franzke and Reinhold, 2012). We refer to 
some publications of research on species 
radiations creating endemic forms by 
phylogenetic, taxonomic, stress and genetic or 
epigenetic investigations (Pravdin, 1969; Mark, 
1983; Hodjat et al., 2018; Burggren, 2018; 
Riede, 2018). 
 
2. Phylogeny and classification difficulties 
Orthoptera Species File (OSF) has provided a list 
of 20 tribes classified in the Gomphocerinae 
subfamily. Gomphocerini Fieber, 1853 or 
Chorthippini Shumakov, 1963 with 16 genera is 
among the largest group of grasshoppers 
(Cigliano et al., 2018). Some investigations have 
placed Gomphocerini, Chrysochraontini, 
Dociostaurini, and Arcypterini in the phylogenetic 
structures of Gomphocerinae and included 



Hodjat and Saboori _______________________________________________ J. Crop Prot. (2021) Vol. 10 (1) 

3 

Omocestus, Myrmeleotettix, Stenobothrus, 
Chorthippus and Arcyptera in their phylogenetic 
tree (Vedenina and Mugue, 2011; Garcia-Navas et 
al., 2017; Rohde et al., 2017).  

Considerable phenotypic plasticity is a major 
source of difficulty in developing a unique 
phylogenetic classification for Gomphocerini 
(Song, 2005; Zhang et al., 2013; Şirin et al., 2014; 
Defaut, 2017). Morphological characters of a few 
species in Chrysochraontini, Arcypterini, 
Locustinae, Acridinae, Melanoplinae, 
Calliptaminae and Cyrtacanthacridinae tribes or 
subfamilies are close to Gomphocerinae or 
overlapping in some morphological characters 
(Defaut, 2017). The most common phylogenetic 
method of their separation is by the NADH 
(nicotine amid adenindinuclrotide phosphate) 
mitochondrial analysis. Yet, with this method, the 
relative time of appearance of Ramburiellini, 
Dociostaurini, and Arcypterini could not be 
determined. However, it was estimated that the 
Gomphocerini and species in Stenobothrus, 
Myrmeleotettix, Omocestus, Stenobothrus, and 
Stauroderus genera are closely related (Defaut, 
2017). The acoustic and phylogenetic relations of 
various polyphyletic taxa in Gomphocerinae are 
comparable (Nattier et al., 2011; Vedenina and 
Mugue, 2011).  

Integrating genomic and phylogenetic data 
with molecular studies might result in species 
delimitation and find how various traits 
produced the evolutionary radiation in 
grasshoppers (Contreras and Chapco, 2006; 
Nattier et al., 2011; Via, 2012; Noguerales et 
al., 2018). The common species of 
Gomphocerini in Europe and the Middle East 
are C. albomarginatus, C. apricarius, C. 
maritimus, C. brunneus, C. biguttulus and 
Pseudochorthippus parallelus (Harris, 1835), 
the latter is classified as one of the P. parallelus 
subgroups (Sergeev, 2011).  

Morphologically similar groups of 
Gomphocerini species are as follows:  
 
2. 1. Chorthippus albomarginatus species group 
Sound changes in this group of species is 
studied by Vedenina (2015); Vedenina and 
Helversen (2003, 2009); Vedenina and 

Shestakov (2014); Vedenina et al. (2001, 
2007b). Hybridization of C. albomarginatus 
and C. oschei produces asymmetric populations 
and reduces the hybrid viability (Vedenina et 
al., 2007a). The founder effect of the 
population with different songs can establish 
sibling species and new cline (Helversen and 
Helversen, 1997). The main driving force of 
speciation in this group of species is sexual 
selection by the female choice of courtship. 
 
2. 2. Chorthippus (Glyptobothrus) biguttulus 
species group and subgroup 
Habitat segregation, character diversification by 
the female choice of copulation, and hybridization 
are known to have established many similar 
species in this group or subgroup of species 
(Saldamando et al., 2005; Gottsberger 2007; Şirin 
et al., 2010; Gomez and Dyck, 2012). The 
complex C. biguttulus group is formed by a 
mixture of macropterous and brachypterous forms 
in occidental and central Europe (Ingrisch, 1995). 
Many species in this group share habitat with C. 
binotatus binotatus (Charpentier) and are similar 
to C. jacobsi (Harz), C. bornhalmi (Harz), C. 
ilkazi (Uvarov), C. miramae (Ramme) and C. 
rubratibialis (Schmidt). Hybridization is reported 
between these species in this group (Stumpner 
and Helversen, 1994; Klapper and Reinhold, 
2003; Helversen et al., 2004; Saldamando et al., 
2005; Gottsberger, 2007; Franzke and Reinhold, 
2012b).  
 
2. 3. Pseudochorthippus parallelus species 
group 
Pseudochorthippus montanus (Charpentier), P. 
curtipennis (Harris), P. tatrae (Harz), P. 
parallelus erythropus (Fieber, 1858), P. p. 
serbicus (Karanian, 1953), and P. p. tenuis 
(Brulle, 1832) are classified in this group. Hybrids 
between the last two subspecies are formed 
because of cytoplasmic incompatibility as a result 
of Wolbachiella infection (Bella et al., 2010). The 
differences in song and the hypothetical change of 
flight activity in separating flightless and winged 
forms have been studied in this group (Ritchie, 
1990; Tregenza et al. 2000; Butlin and Hewitt, 
2008; Kohler et al., 2017) Morphological 
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variations in P. parallelus from samples at 450-
2500 m elevation indicate that tegmina and body 
length of samples was decreased by ascending the 
mountain but morphology of pronotum is 
unchanged. 
 
2. 4. Chorthippus (C.) dorsatus species group 
Chorthippus loratus (Fischer von Waldheim) 
and C. dorsatus are sibling species in this group 
of species. Songs in C. albomarginatus group 
represent an advanced development of the C. 
dorsatus group (Stumpner and Helversen 1994). 
The complexity of the calling songs in these 
two groups of grasshoppers is comparable (V. 
Vedenina personal communication). 
 
2. 5. Chorthippus (Glyptobothrus) binotatus 
species group 
Three subspecies of C. binotatus and three 
subspecies of Chorthippus (G.) saulcyi (Krsuss) 
are classified in separate groups of species. The 
two groups are very similar and are usually 
classified into one group. The genetic lineages 
between populations in this group of species 
living in the mountainous region of the border 
between France and Spain were studied by 
Defaut (2011) and Noguerales et al. (2016, 
2018). Isolation of populations living in 
different mountain habitats may have been the 
cause for species separation in this group 
(Noguerales et al., 2016). 
 
3. Factors affecting classification of the 
Gomphocerinae 
3. 1. Variation and Plasticity 
The definitions of phenotypic plasticity and its 
relation to selection, coevolution, ecological 
speciation, genetic drift, phylogenetic inference, 
pleiotropy, reinforcement, sexual dimorphism 
and size constraints have been explicitly 
described with examples of Gomphocerini 
species (Whitman and Agrawal, 2009; Feng et 
al., 2015; Zinna et al., 2018). Plasticity is more 
liable to fix characters after insects acquire a 
new trait. Variations are temporary 
morphological character dissociation that may 
fix on a part of a population for several 
generations. Plasticity and variation may cause 

speciation or contemporary evolution i.e. the 
evolution of traits over a short period of time 
(e.g. centuries rather than eons; Górür, 2005; 
Whitman and Agrawal, 2009). Plasticity can 
change individual, population or species 
epigenetic by environmental stress in insects 
(Hoffmann and Parsons, 1991; Oxford 
Research Group, 2015; Augustyniak et al., 
2016; Burggren, 2018).  

Phenotypic plasticity reflects the “reaction 
norm” of individuals to climate and other 
environmental conditions (Laiolo et al., 2013). 
Reception of environmental stressful conditions 
by CNS can cause variation and plasticity in parts 
of species population (Ronacher, 1989; Romer, 
1993; Skinner, 2014). The genotype of an 
organism in the reaction norm may also be 
affected by life incidents. That is, plasticity 
confers the capability of producing changes in 
phenotype in response to environmental changes 
(Sgro et al., 2016). Final decision for direction of 
movement towards a stimuli such as attraction to 
the opposite sex in C. biguttulus, Gomphocerus 
sibiricus (L.), Omocestus viridulus (L.) and 
Stenobothrus lineatus (Panzer, 1796) is taken by 
the brain signals that are involved to activate the 
appropriate muscles (Helversen and Helversen, 
1997; Klapper and Reinhold, 2003). Therefore 
plasticity is a broad term that can apply to the 
genetic, epigenetic and contemporary evolution of 
Gomphocerini response to the environment. 
 
3. 1. 1. Plasticity and variation on insect pests 
Increasing plant defense against herbivores and 
pathogens is related to DNA methylation and 
histone modification by the transgenerational 
defense. Changes in the phenotypic traits of 
grasshoppers are also linked to their 
performance and gene profile. Genes in C. 
albonemus change expression pattern when 
pastures are overgrazed and in cases of food 
shortage (Qin et al., 2017). The effects of 
ambient and optimal temperatures on 31 species 
of insect pests have been compared by 
Lehmann et al., (2018). North Europe, South 
America, and Australia had fewer outbreaks of 
these pests compared to Asia and Africa. 
Aridity is an important factor in locust and 
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grasshoppers to reach the outbreak point 
(Uvarov, 1957). Repeated insecticide treatments 
without considering the importance of natural 
enemies can cause pest outbreaks (Hodjat, 
1967). A pest control project using modeling to 
consider the efficiency of pest control methods 
for Iran is suggested by Hodjat (1974). 
Modares-Awal’s (2012) list of Orthoptera pests 
in Iran indicated that most species do not 
seriously damage crops and hardly reach to 
outbreak position. Caution for not using 
repeated insecticide treatments without pest 
management strategies has reduced pest 
damage to crops (Hodjat, 1967).  

At present, the locust outbreaks are 
occasionally reported only after a rainy 
winter and revival of natural pastures in Iran. 
Some pest species such as Eurygaster 
integriceps Puton, Bemisia tabaci 
(Gennadius, 1889), Chilo suppressalis 
(Walker) and occasionally other insect pests 
of crops and fruit trees need a continuous 
survey (Davatchi, 1954). However, locust 
phase polymorphism, phenotypic plasticity, 
including various mechanisms responsible for 
the insurgence of aggressive biotypes, or 
resistance to insecticides are the main factors 
behind the pest control problems (Song, 
2011; Augustyniak, 2016; Hodjat, 2016; Sgro 
et al., 2016; Lehmann et al., 2018). 
 
3. 2. Epigenetic and stress influences 
Various stressors trigger epigenetic 
modifications in animals and plants. 
Modifications allow gene transcription and 
remain in genome memory. Transgenerational 
epigenetic memory ensures plasticity and 
genetic variation (Tricher, 2015). Gomphocerini 
species may change colour, size, and activity in 
response to climatic conditions, and these 
changes are epigenetically inheritable (Rohde et 
al. 2017). In fact, such polymorphisms are 
common in Orthoptera (Wall, 1987; Mol et al., 
2003; Laws and Belovsky, 2010; Stillwell et 
al., 2010; Gomez et al., 2012; Nettle and 
Bateson, 2015; Valverde and Schielzeth, 2015; 
Lonsdale, 2018). Adaptive mutations by stress 
in locust are non-directional but they may cause 

new traits in populations (Whitman and 
Agrawal, 2009). Such rapid phenotypic 
adaptation to new environmental conditions 
reduces the strength of divergent selection 
(Sword, 2002, 2003; Smadja and Butlin, 2011).  

Methylation of DNA through epigenetic 
regulation of the neural transcriptome occurs in 
response to the stress of insects that become 
resistant to various toxins and escape unsuitable 
environmental conditions such as drought, heat 
and food restriction. In C. biguttulus DNA 
breaking and its repair with new arrangements of 
amino acids is the result of environmental stress 
effects (Bijlsma and Loeschke, 2005; 
Augustyniak et al., 2006; Burggren, 2017; 
Lonsdale, 2018). Environmental stress and 
epigenetic inheritance are closely related to the 
physiological change of organisms in reaction to 
the inhabiting conditions that affect individual 
traits in the population (Skinner, 2014). 
Methylation of DNA through epigenetic 
regulation of the neural transcriptome occurs in 
response to environmental stress in insects. Most 
insects become resistant to various environmental 
toxins and escape unsuitable living conditions 
such as drought, heat and food restriction. Food 
shortages in crowded conditions of locust may 
increase cyclooxygenase, or COX stress enzymes. 
The enzyme affects the metabolism of locust for a 
few generations and the gregarious phase of the 
locust is produced (Rogers et al., 2003; Hodjat, 
2006, 2016; Song, 2011). DNA breaking and its 
repair with new arrangements of amino acids in 
C. biguttulus are the results of environmental 
stress effects (Bijlsma and Loeschke, 2005; 
Augustyniak et al., 2006; Burggren, 2017; 
Lonsdale, 2018). 

The genes responsible for oxidative stress 
are expressed by superoxide dismutase (SOD) 
(Bijlsma and Loeschcke, 2005; Glastad et al., 
2011; O’Grady and Markow, 2012; Skinner, 
2014; Burggren, 2017, 2018). 
Transgenerational morphological and genetic 
characters are modified by stress-related levels 
of cytochrome oxidase. The toxin stress effects 
on mitochondria and metabolism as a result of 
aging and zinc toxicity in insects are studied in 
detail (Augustyniak et al., 2008, 2011, 2016; 
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Skinner, 2014; Bultman, 2015; Lonsdale, 
2018). Food shortages in crowded conditions of 
locust may also increase COX stress enzymes. 
After a few generations of crowding, metabolic 
enzymes change appears in locust and may 
change them to the gregarious phase (Rogers et 
al., 2003; Hodjat, 2006; Song, 2011). To 
maintain plasticity, stress-induced epigenetic 
modifications buffer against DNA sequence-
based evolution (Tricker, 2015).  

The epigenetic regulatory system of 
neurosecretions allows reaction against stress 
effects (Smith and Ritchie, 2013; Tetreau, 2018). 
Stressors with different intensity influence the 
insect nervous secretions and hormones such as 
biogenic amines controlling carbohydrate or lipid 
metabolism and causing variation in insect 
behavior and morphology (Perić-Mataruga et al., 
2006). Insect pricking by injection wound 
produced antimicrobial phenoloxidase that 
masked the effect of lipopolysaccharide (LPS) 
immune challenge (Monge, 2017).The 
embryogenesis in C. biguttulus by transcriptomic 
profiling at various stages of development shows 
that genes are upregulated in the imago of C. 
biguttulus and are mostly involved in aging and 
immunity (Berdan et al., 2017). In stressed 
insects, changes in NF-kB (nuclear factor kapper-
light chain of activated B-cells) of proteins that 
bind to DNA can decrease the antioxidant 
activities in the Gluthathion redox system. 
Molecular and physiological effects of stress can 
impose novel trade-offs and character changes 
(Isaksson et al., 2011). Stress can produce 
asymmetric forms in insect populations (Parsons, 
1991, 1992; Møller and Swaddle, 1997; Jentzsch 
et al., 2003; Hodjat, 2016) or asymmetric mate 
choice in grasshoppers (Hochkirch and Lemke, 
2011). Multigenerational environmental stressors 
on insects may last for a few generations by 
epigenetic effects but after the disappearance of 
stress, populations can obtain the previous 
phenotypic form (Burggren, 2016). 
 
3. 3. Phenotypic plasticity in a noisy and 
toxic environment  
Environment and stressful conditions can 
change the phenotype of grasshoppers by 

changing their song loudness, resisting the 
toxins in their surroundings or competing with 
other males in copulation with females. Males 
of C. biguttulus resist the road noise by 
increasing the loudness of their song. Female 
selection of these males for copulation will 
increase the chance of progeny survival 
(Einhaupl et al., 2011; Lampe et al., 2012, 
2014). A male of Omocestus viridulus sings 
shorter songs when other males are close by 
(Eiriksson, 1992). Various morphological forms 
of Glyptobothrus pullus (Philippi) appear as a 
result of feeding on different host plants in 
Switzerland (Steiner, 2006). In C. biguttulus 
DNA breaking and its repair with new 
arrangements of amino acids are the results of 
environmental stress effects (Bijlsma and 
Loeschke, 2005; Augustyniak et al., 2006; 
Burggren, 2017; Lonsdale, 2018). 

In unfavorable environmental conditions, DNA 
damage or its partial modification may cause 
phenotypic plasticity (Steiner, 2006; Gottsberger, 
2007; Dowle et al., 2014; Rohde et al., 2015a). The 
genetic modification in the beet armyworm, 
Spodoptera exigua (Hübner) is taking place after 
about 120 generations in multigenerational 
microevolution. DNA damage by zinc treatment 
disrupted the development of C. brunneus, during 
diapause or induced embryonic disorders 
(Augustyniak et al., 2011). In stressed insects, 
Glutathione S-transferase (GSTs) and catalase 
(CAT) enzymes, important for metal defense 
against intoxication, were reduced. The cycle of 
protein digestion inside the cell and its effects on 
synthesizing antioxidant is reviewed by Isaksson et 
al., (2011). Common field grasshoppers usually 
can adapt to metal-polluted habitats (Augustyniak 
et al., 2008, 2011). Zinc-induced effects are 
transferred to the embryonic DNA of C. brunneus 
(Augustyniak et al., 2006, 2016). Chernobyl 
radiation caused genetic damage and mutation on 
C. albomarginatus, as well as oxidative stress 
(Bonisoli-Alquati et al., 2018). 
 
3. 4. Epigenetic modifications 
So far the epigenetic influence on 
morphological changes or character divergence 
of Chorthippus species is not known. 
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Transgenerational defense induction and 
epigenetic inheritance are cued by methylation 
signaling in the parental generation. The 
changes in the offspring genotype caused by 
gene imprinting and neural fingerprints 
transcribe experiences of insects by affecting 
maternal and paternal DNA methylation 
(Norouzitallab et al., 2019; Ernst et al., 2015; 
Burggren, 2017). Epigenetic modification is 
known to cause phenotypic changes by DNA 
methylation across insects (Bewick et al., 
2017). DNA methylation can regulate genome 
at CG -sets on chromosomes. They can also 
regulate transcription at the CpG islands 
(Deaton and Bird, 2011). The epigenetic 
mechanisms can cause polymorphism, change 
the locust phase, and act on caste formation of 
social insects (Weiner, 2012; Ernst, et al., 2015; 
Mallon et al., 2016; Burggren, 2017; Lonsdale, 
2018). Environmental epigenetic modification 
is closely related to the stress effects by stimuli-
response effects for defense on living 
organisms.  
 
4. Hybridization and endemism  
Basic factors responsible for hybridization are 
genomically influenced by genetics and 
epigenetics. They influence cell division by 
cytoplasmic and genetic incompatibility 
resulting in the presence of different genomes 
(Ishikawa and Kinoshita, 2009). Hybrid and 
endemic species of Gomphocerinae are 
described in relation to asymmetry in female 
preferences of male songs. Geographical 
distribution of Gomphocerinae species is the 
source for variation, plasticity, and endemism 
by environmental stress. Many endemic species 
and subspecies are created by acoustic 
divergence and sympatric speciation in 
mountain regions. Hybridization and molecular 
evolution by mDNA sequencing are creating 
new routes for investigating trait divergence in 
Gomphocerinae. Trans-generational defense 
induction and epigenetic inheritance are cued 
by environmental signaling in the parental 
generation. The changes in the offspring 
genotype caused by gene imprinting and neural 
fingerprints transcribe experiences of insects by 

affecting maternal and paternal DNA 
methylation (Ernst et al., 2015; Burggren, 
2017). Some of the Gomphocerinae hybrid 
species are produced after females choose to 
copulate with preferable males songs 
(Gottersberg, 2007).  
 
4. 1. Hybridization 
Hybridization and factors responsible for 
character diversification may ultimately result 
in evolution and sympatric speciation. Many 
publications investigate factors responsible for 
the separation of population characters in 
Gomphocerinae and their hybrids (Pravdin, 
1969; Gottsberger, 2007; Vedenina et al., 
2007a; Smadja and Butlin, 2011; Frank and 
Reinhold, 2012b; Rhode, 2015; Job et al., 
2016). Positive selection in favor of increasing 
flight ability is involved in some grasshopper 
populations at high altitudes in the mountains of 
China (Li et al., 2018). The relative abundance 
of C. montanus and C. parallelus as specialist 
and generalist also produce hybrids that can 
trigger speciation (Rhode et al., 2015). Crosses 
of the following species can produce hybrids in 
Gomphocerinae species (Gottesberg, 2007; 
Bella et al., 2010; Rhode, 2015; Vedenina, 
2015): 
C. brunneus X C. jacobsi; C. bigutulus X C. 
brunneus; C.eisentrauti X C. brunneus; 
C. biguttulus X C. mollis; C. albomarginatus X 
C. oschei; C. albomarginatus X; 
C. karelini; P. montanus X P. parallelus; 
Stenobothrus clavatus X S. rubicundus;  
P. parallelus parallelus X P. parallelus 
erythropus.  

In northeastern Ukraine, C. albomarginatus 
and C. oschei produce hybrid offspring. The two 
crossing species are morphologically very similar 
except for their songs and organs for song 
production. The differences in the song are caused 
by leg movements and the type of pegs involved 
on femur after hoppers change the angle of their 
body (Vedenina et al., 2007b; Sardnick et al. 
2016). Courting males can produce more complex 
sounds and are preferentially selected by the 
female's inheritance. Duplicate loci controlled the 
homologous elements in the songs of the two 
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copulating species of C. oschei from C. 
albomarginatus (Vedenina and Helversen, 2003; 
Vedenina et al., 2007b). C. karelini produced a 
song with two short elements alternating with a 
longer element. Even courtship songs of two 
males of C. karelini recorded from two different 
localities in Ukraine produced different songs. 
The songs from these localities had hybrid 
characteristics of the two populations (Vedenina, 
2015). In the Picos district in the north Spain 
hybridization between C. brunneus and C. jacobsi 
produced offspring with different numbers of 
stridulatory pegs in different localities. Various 
peg numbers produced different cline in the Picos 
region. The changes were significant from 
populations approximately 30 km south of Picos 
de Alps. The differences for wingless meadow 
grasshoppers, P. parallelus were measured by the 
nested model for geographic variation. Mark and 
recapture methods for measuring the elation of 
stridulatory pegs differences in various habitats 
have been applied to measure the extent of 
differences (Bridle et al., 2001). Investigation of 
hybridization and molecular evolution by mDNA 
sequencing is creating new routes for finding 
genetic or phylogeographic trait divergence in 
Gomphocerinae (Hewitt, 2001). Asymmetric 
mate choice between the two closely related 
populations of Gomphocerini in the same locality 
is presumed to produce hybrid forms (Hochkirch 
and Limke, 2011; Hochkirch, 2013). Asymmetry 
is recorded in female preferences between two 
closely related Stenobothrus clavatus and S. 
rubicundus (Vedenina et al., 2014; Sardnick et al., 
2016). Song of C. biguttulus changes 
characteristics in relation to male robustness and 
the attractiveness to females. The loudness of 
songs also changes to neutralize noisy 
surroundings (Gottsberger, 2007; Einhaupl et al., 
2011; Lampe et al., 2014). 

Hybrid sterility and mate preferences between 
two closely related species of Gomphocerini are 
related to many factors such as genetic 
incompatibility, gene flow between sympatric 
species, attractiveness to intermediate phenotypes 
and plasticity (Gootsberger, 2007; Hochkirch, 
2013; Sgro et al., 2016). Courting males can 
produce more complex sounds and are 

preferentially selected by the females. Inheritance 
implying duplicate loci that control the 
homologous elements in the song of two closely 
related species are involved in hybridization 
between them such as hybrids between C. oschei 
and C. albomarginatus (Vedenina and Helversen, 
2003; Vedenina et al., 2007b). 

Even courtship songs of two males of C. 
karelini recorded from two different localities 
in Ukraine produced different songs. The songs 
from these localities had a hybrid characteristic 
of the two populations (Vedenina, 2015). 
Asymmetry is observed in female preferences 
between two closely related Stenobothrus 
clavatus and S. rubicundus (Vedenina et al., 
2014; Sardnick et al., 2016). In the Picos 
district of north Spain, hybridization between 
C. brunneus and C. jacobsi has produced 
offspring with a different numbers of 
stridulatory pegs in different localities. Various 
peg numbers produced different clines in the 
Picos region. The changes were significant 
from populations approximately 30 km south of 
Picos de Europa Mountains.  

Mark and recapture method is used for 
measuring the relation of stridulatory peg 
numbers of C. brunneus living in different 
habitats in Santander mountain regions of north 
Spain. The principal component analysis for mean 
peg scores against the distance from the fitted 
cline center shows that C. brunneus can be easily 
distinguished from G. jacobsi by their peg 
numbers. The hybrid forms are found within 30 
km distance (Bridle et al., 2001). Similar studies 
of female choice of male song for copulation have 
been conducted in other grasshopper species 
(Ritchie, 1989, 1990; Helversen and Helversen, 
1997; Bridle et al., 2001; Benediktov, 2005, 2014; 
Einhaupl et al., 2011; Heinrich et al., 2012; Job et 
al., 2016; Kohler et al., 2017).  
 
4. 2. Endemism 
Endemism is produced by divergence in 
morphology and the song of Pseudochorthippus 
parallelus (Zetterstedt) populations in 
mountains. Their populations by genetic 
polymorphism have chosen various traits. A 
long separation of population traits increased 
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their genetic distance and caused morphological 
or acoustic diversification in various directions. 
The variability in characters are signs for 
forming an endemic or sympatric species 
(Tregenza et al., 2000; Butlin and Hewitt, 2008; 
Stillwell et al., 2010; Vedenina and Mugue, 
2011; Monge, 2017). 

Chorthippus pullus by feeding on various host 
plants produced plastic forms in Switzerland 
(Steiner, 2006). Procedures for the appearance of 
endemic species in Chorthippus in Turkey (Mol et 
al., 2003) and the list of Acrididae endemic 
species of Iran (Hodjat et al., 2018) show the 
reality of having endemic forms of grasshoppers. 
The Euloryma Spearman, 2013 (Hemiacridinae; 
Acridinae) of the Cape Floristi region in South 
Africa produce endemic species in their narrow 
distribution area. Euloryma larsinorom and E. 
lapollei are congeneric flightless hoppers 
distributed in natural shrub and heath vegetation. 
E. umoja and E. ottei can tolerate vineyard and 
agricultural environment (Adu-Acheampong et 
al., 2017). DNA methylation leading to epigenetic 
inheritance of the modified phenotype in endemic 
species of grasshoppers requires further 
investigation (Nettle and Bateson, 2015). 
 
5. Song and phenotypic variation  
Sound in Gomphocerinae is produced by rubbing 
the hind femora with a row of the stridulatory 
pegs, up and down against the radial vein of the 
tegmina, which is more prominent than the other 
veins and is called the plectrum. The song of 
males in C. dorsatus, C. dichrousand C. loratus 
is also produced by movements of the hind 
femur against the tegmina but differs in various 
localities. The song character may change by the 
position of their upward body direction or the 
speed of rubbing the set of pegs. Detailed 
registration of song characters differs between 
Chorthippus (Glyptobothrus) bozdaghi 
(Uvarov), Chorthippus (Glyptobothrus) ilkazi 
(Uvarov) and Chorthippus (Glyptobothrus) 
helverseni (Mol et al., 2003). Temporal features 
of the song in C. brunneus and C. jacobsi depend 
on the neurological pattern that controls leg 
movement. The neuromuscular activity during 
stridulation of C. biguttulus, Gomphocerus 

sibiricus, Omocestus viridulus (L.) and 
Stenobothrus lineatus (Panzer, 1796) is not 
related to the number of pegs (Elsner, 1974; 
Saldamando et al., 2005; Perić-Mataruga et al., 
2006). 

Mating of female grasshoppers with a 
preferable male is because of their particular 
song characteristics and can initiate sympatric 
species for adapting to the prevailing 
conditions. Consequently, in large parts of 
central Europe, hybrid populations and 
sympatric species have originated (Hochkirch 
and Limke, 2011; Hochkirch, 2013; Rohde et 
al., 2015b, 2017).  

Chortoicetes terminifera song is changed by 
crowding conditions (Song, 2005, 2011; 
Chapuis et al., 2010; Ernst et al., 2015). The 
internal reaction to resist the road noise in 
males of C. biguttulus is causing an increase in 
the loudness of their song. Female selection of 
these males for copulation will also increase the 
chance of progeny survival (Klappert and 
Reinhold, 2003; Einhaupl et al., 2011; Heinrich 
et al., 2012; Lampe et al., 2012).  

Limited condition dependence of male body 
condition is likely to be correlated with male 
acoustic signals in C. biguttulus (Franzke and 
Reinhold, 2012a). The embryogenesis in G. 
bigutullus by transcriptomic profiling at various 
stages of development shows that gene expression 
at various stages of the life cycle ranged from 
synthetic biogenic amines to chitin-binding. 
Genes upregulated in the imago of C. biguttulus 
were mostly involved in aging and immunity 
(Berdan et al., 2017). In stressed insects, changes 
in NF-kB (nuclear factor kapper-light chain of 
activated B-cells) of proteins that bind to DNA 
can decrease the antioxidant activities in the 
Gluthathion redox system. Molecular and 
physiological effects of stress can impose novel 
trade-offs and character changes (Isaksson et al., 
2011). Stress can produce asymmetric forms in 
insect populations (Parsons, 1991, 1992; Møller 
and Swaddle, 1997; Jentzsch et al., 2003; Hodjat, 
2016) or asymmetric mate choice in grasshoppers 
(Hochkirch and Lemke, 2011). Multigenerational 
environmental stress on insects may last for a few 
generations by epigenetic effects but in some 
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cases after the disappearance of stress populations 
can show phenotypic modification (Burggren, 
2018). Pharmacologically induced stridulation 
had little effect on the courtship song and only 
changed one or two of the sound elements 
(Vedenina et al., 2001).  
 
6. Conclusion 
 
Environmental and genetic factors have produced 
various endemic populations with new characters 
that may create endemic hybrid and sympatric 
species of grasshoppers (Hodjat et al., 2018). The 
problem for taxonomists is to classify Orthoptera 
by considering their phylogenetic or ancestral 
relationship. In taxonomy, mainly morphological 
abrupt changes between taxa are the measure for 
defining them but variation in morphological 
characters is the gradual results of gene flow into 
the population. Morphological differentiation 
despite gene flow is based on a selection of 
phenotypes in the survived population as a result 
of the environmental stress (Dowle et al., 2014). It 
is difficult to find the degree of morphological 
character changes in each taxon. The 
physiological trade-offs and diversifying 
characters of populations are known to affect the 
taxonomy and life history at various localities in 
animals (Zera and Harshman, 2001). In stressed 
insects, changes in NF-kB (nuclear factor kapper-
light chain of activated B-cells) proteins that bind 
to DNA can decrease the antioxidant activities in 
the Gluthathion redox system. Molecular and 
physiological effects of stress can impose novel 
trade-offs and character displacements (Isaksson 
et al., 2011). 

Phase polymorphism and variation in locust 
morphometrics appear to be the result of 
environmental stress effects on their physiology 
(Hodjat, 2016). Epigenetics in contemporary 
evolution separates the characters of the migratory 
phase for several generations from the solitary 
phase (Mallon et al., 2016). This phenomenon can 
also affect other Gomphocerini species and 
produce variation in their morphological 
characters in response to environmental stress 
(Parsons, 1992; Chapuis et al., 2010; Ketmaier et 
al., 2010; Murren et al., 2015). Hormones and 

physiological changes, affecting insects due to 
environmental conditions, are capable of being 
epigenetically inherited through methylation. A 
new line of research is proposed for investigating 
the relation of epigenetic changes to stress in 
insects (Merritt and Bewick, 2017).  
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  لهیقبي هاگونه دری احتمال کیژنتیاپ وي ریپذانعطاف ر،ییتغ راتیثأت بري مرور
Gomphocerini (Orthoptera; Gomphocerinae)   

  
  *يصبور رضایعل و حجت نیدحسیس
  

  .رانیا کرج، تهران، دانشگاهی عیطب منابع وي کشاورز سیپرد ،یپزشکاهیگ گروه افشار، جلال استادی جانورشناس موزه
  saboori@ut.ac.ir :مسئول مکاتبه نویسنده الکترونیکی پست

  1399 مرداد 24: ؛ پذیرش1398 شهریور 25: دریافت
  

ي هاگونه  ازي اریبس  در  کیژنتیاپ احتمالاً و رفتار ،یشناسختیر در رییتغ موجبی طیمح طیشرا: دهیچک
 در راتیی ـتغ وي  ریپـذ انعطـاف . شودیمی  کوهستاني  هاستگاهیز در ژهیوبه Gomphocerinae رخانوادهیز
  ي بـرا  مـاده  انتخـاب ی  ط ـ در هایژگیویی  جدا اثر در رخانوادهیز نیا در هاگونه ازي  اریبسی  شناسختیر

 راتییتغ.  دهدیم  لیتشکي اگونه اي یارگونهیزي هاگروه مختلف،ي هاکشانه که شودیم جادیاي ریگجفت
 ازي اریبس کیژنتیاپ وي ولوژیزیف بر ،یشناسختیر بر افزونی طیمحي هااسترس اثر دري ریپذانعطاف و

 دیتول با است ممکن مناسب ماده باي  ریگجفت وی  طیمحي  هااسترس. گذاردیم ریثأت حشراتي  هاگونه
 ای و معاصر تکامل .شود درازمدت دریی  زاگونه و صفاتیی  جدا به منجر و شده همراه تیجمع در رگدو

 و بـوده  Gomphocerinaeی  شناس ـختیر وی  آوازخوان در راتییتغ بر لیدل است ممکن کیژنتیاپ وراثت
 ،یطیمحي  هااسترسی  احتمال اثرات مقاله، نیا در. آنهاستي  بندرده دری  کنون مشکلات دری  اصل عامل

   حـشرات ي هـا گونـه  ازی م ـین حدود ریثأت. شودیم مروری بومي اهگونه ظهور بایی  زاگونه وي  ریگدورگ
 در آفت حشراتی  کنون تیوضع. است شده رنگکمی  کنونی  طیمح طیشرا در رییتغ اثر در آفت عنوانبه
 .است گرفته قرار بحث مورد رانیا

  
  آواز پ،یفنوتا ،Gomphocerini ،يریگدورگ ،يبندرده :يدیکل واژگان


