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Abstract: Cellular energy allocation (CEA) test was performed in order to
investigate the effects and costs of bare carbon nanotubes (CNTs) and CNTs in
combination with titanium dioxide nanoparticles (CNTs/TiO,-NPs) on Glyphodes
pyloalis Walker after 24, 48 and 72 hours of exposure to 100, 200, 300, 400 and
500 ppm of the treatments. Results showed the negative correlation between total
lipid amounts and concentrations of treatments (i.e. CNTs and CNTs/TiO,-NPs) as
well as exposure time. Contrary to CNTs treatments, carbohydrate contents were
affected by both of CNTs/TiO,-NPs concentration and time of exposure. Results
showed that the effect of bare CNTs in the enhancement of glycogen content
appeared significantly faster than that of CNTs/TiO,-NPs. Increasing time of
exposure to all concentrations of CNTs, except for 100 ppm, prevented
enhancement of protein content. The effect of bare CNTs on the reduction of
protein contents was faster and greater than that of CNTs/TiO,-NPs. The results
indicated that G. pyloalis cannot regulate internal CNTs and CNTs/TiO,-NPs
concentrations efficiently without considerable impact on the energy reserves (Ea).
The comparison of energy consumed (Ec) in treated larvaec showed that
CNTs/TiO,-NPs reflected the higher energy demand of the stress response than
CNTs. Generally, CEA was significantly decreased as the concentration of CNTs
treatments increased. More reduction in CEA amount of all treatments by
CNTs/TiO,-NPs than that of the control is also probably considered as a cost to
deal with detoxification when the concentration increased and at all the tested time
points. Therefore, CEA test might be considered as an early biochemical
biomarker for assessing immediate response of organisms after acute exposure to
stressors and thus could be applied to risk assessment of nanomaterials.

Keywords: CEA test, CNTs/TiO,-NPs, biochemical biomarker; risk assessment,
lesser mulberry pyralid

Introduction

Some of the human past bitter experiences in the
application of new sciences and technologies
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without regard to their environmental impacts
have led to paying attention to the fate of

nanomaterials in nature. Attention to the
production and application of synthetic
nanomaterials in the various fields such as

agriculture and food has increased in recent
years (Adana, Fen, Dergisi, and Tungsoy, 2018;
Gottschalk and Nowack, 2011; Kah et al., 2016).
Different properties and effects of synthetic
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nanomaterials compared to the same materials in
bulk, can pose new health risks to humans and
environment. It needs to be examined how
defense mechanisms of organisms would be able
to respond adequately to these engineered
particles which may have characteristics never
encountered before (Elsaesser and Howard,
2012; Schwirn and Volker, 2016). Following the
publication of last virgin of guidance on the risk
assessment of the application of nanosciences
and nanotechnologies in the food and feed chain
for human and animal health by European Food
Safety = Authority  (EFSA)’s Scientific
Committee; the hope is that comprehensive
knowledge will be available on environmental
effects of nanoparticles (Hardy et al., 2011;
Hardy et al., 2018).

CNTs are tubes made of carbon with
diameters ranging from below 1 nm to 10 s of
nm. Certain properties of these nanoparticles,
such as cost-effective, light-weight and high
surface area-make them particularly suitable for
a wide range of industrial applications
(Venkataraman et al., 2019). Generally, CNTs
surface modifications which is caused by
oxidation or treatment with surfactants to
facilitate their aqueous solution could increase
possible environmental exposures to these
nanoparticles (Venkataraman et al., 2019). In a
similar way in the environment, some natural
coatings could increase the dispersability of
CNTs in aquatic solutions by covering the
hydrophobic surface (Jackson et al, 2013).
Different ecotoxicological studies showed that
exposure to CNTs led to oxidative stress,
induced reactive oxygen species (ROS)
production and also reduction in levels of
intracellular ATP.

Titanium dioxide (TiO,) as one of the most
important transition metal oxides has potential
application for environmental photocatalysis
purifications. (Rodriguez et al, 2017). Our
previous studies showed that TiO,-NPs could
have lethal and sub lethal effects on G. pyloalis
which are related to the treatment concentration
and length of exposure time to each
concentration (Memarizadeh et al, 2014a and
2014b). Combination of TiO,-NPs with CNTs
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could form hybrid structure with enhanced
photocatalytic activities compared with bare
TiO,-NPs (Nguyen et al., 2014). The role of
CNTs in mentioned combination is providing a
large surface area support and also outstanding
charge transfer abilities for TiO,-NPs as a
photocatalytic catalyst (Nguyen et al., 2014).

The wvast majority of the nano-
ecotoxicological studies have focused on the
toxicity of the bare form of CNTs in aqueous or
algal ecosystems. However, in nature, CNTs
due to very strong adsorption affinity, most
commonly are found in the conjunction with
various contaminants (Schwirn and Volker,
2016; Jang and Hwang, 2018). Therefore, the
interactions of CNTs with other hazardous
compounds (such as toxic metals) can influence
the behavior of toxic materials in the
environment. Although the mechanisms of this
issue has not been fully elucidated but the
effects of interaction of CNTs with other
pollutants on the behavior and toxicity of both
CNTs and the other pollutants should be studied
(Abega et al., 2019).

Biochemical biomarkers were utilized to
determine the possible risks for human and
ecological exposures to the nanoparticles. It is an
important and challenging issue to know and
determine the behavior of biochemical
biomarkers in the exposure to combination of
CNTs and TiO,-NPs. Furthermore, it is essential
to pay more attention to adverse effects of
nanoparticles on insect species. The mechanisms
by which organisms control the possibly
extrinsic stressors can be studied from different
aspects. For instance, the energy reserves
available for metabolism (Ea) which is the total
amount of energy acquired from available total
lipid, total protein, glucose and glycogen content
in addition to the energy consumption (Ec)
which is the activity of electron transport system
which can be measured by altering enzyme
production in an organism (De Coen and
Janssen, 1997) can be used as early indicators of
the metabolic conditions (Rueda-Jasso et al.,
2004). Cellular energy allocation (CEA) that is
calculated by dividing Ea by Ec, is a fast test for
the energy budget measurement of organisms
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(Widdows and Donkin, 1992; De Coen and
Janssen, 1997; Verslycke et al., 2004; Bagheri et
al., 2010). Memarizadeh et al. (2014a) using
CEA test surveyd the pollution potential of TiO,-
NPs on ecological health of G. pyloalis. Changes
in the energy budget indicated the TiO,-NPs as a
toxic stress agent on the mentioned insect
(Memarizadeh et al, 2014). Swiatek and
Bednarska (2019) used CEA as an early
biomarker to survey the effects and costs of
different forms and concentrations of Zn on the
earthworm Eisenia andrei Bouché (Swiatek and
Bednarska, 2019).

The aim of this study is to present an early
biochemical indicator using CEA test in order
to make a risk assessment of bare CNTs and
also CNTs in combination with TiO,-NPs on
the newly-ecdysed fifth instar larvae of G.
pyloalis.

Materials and Methods

Insects

As mentioned in our previous works
(Memarizadeh et al., 2014a, b), mass rearing of
G. pyloalis in the vicinity of Rasht, Iran was
carried out in the laboratory under controlled
conditions. Newly-ecdysed fifth instar larvae of
G. pyloalis were used for sublethal experiments
afterrearing at least two generations of G.
pyloalis under laboratory conditions.

Synthesis of CNTs/TiO,-NPs

According to previous studies (Memarizadeh et
al., 2014a, b), TiO, nanoparticles were prepared
by hydrolyzing titanium isopropoxide (Trung et
al., 2003). CNTs/TiO, nanocomposites were
produced according to method of Li et al
(2011) utilizing sodium dodecylbenzesulfonate
(NaDDBS) as the CNTs surface functionalizing
agent.

Treatments

The newly-ecdysed fifth instar larvae of G.
pyloalis were treated with different concentrations
of CNTs and CNTs/TiO,-NPs suspensions (0,
100, 200, 300, 400 and 500 mg/L). Over 72 h
after treatments, representative samples were
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taken from surviving larvae. The collected
samples were placed in a freezer at -20 °C until
biochemical assays were performed.

Preparation of samples

Preparation of treated larvae, in order to assess
the amount of energy reserves (i.e. total lipid
and glycogen), was performed according to
Yuval et al. (1998) method. Homogenization
and preparation of samples for electron
transport system (ETS) assay was performed
through method of Verslycke et al. (2004).

As mentioned in our previous work
(Memarizadeh et al., 2014a), measurement of
the energy budget, cellular energy allocation
(CEA), was assayed using the method described
by Van Handel and Day (1988) with minor
modifications.

CEA was calculated by determination of
total energy reserves as energy available (Ea) in
an insect body and the activity of electron
transport system (ETS) as energy consumption
(Ec) according to the following formula:

Ea = X (total lipid, carbohydrate, glycogen and
total protein) (joule/insect);

Ec = ETS activity (joule/insect);

CEA = Ea/Ec.

Determination of the amount of total lipid
Measurement of total lipid of treated larvae
compared to the control using Vanillin reagent
was carried out as described in our previous
work (Memarizadeh et al., 2014a). Standard
curve for lipid assay was plotted using
cholesterol as the standard (Yuval et al., 1998).
Determination of the amount of total
carbohydrate

Total carbohydrate in each individual larvae,
using anthrone reagent as explained in detail in
the previous work (Memarizadeh et al., 2014a),
was calculated from standard curve using
maltose as standard (Yuval et al., 1998).

Determination of the protein content

Protein concentration was estimated according to
the Bradford (1976) method, using bovine serum
albumin as the standard (Bradford, 1976).
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Calculation of energy reserves

To calculate energy reserves, different
components of energy reserves should be
transformed to energetic equivalents which
consisted of 17.5 j mg' glycogen and
carbohydrate, 24 j mg 'protein and 39.5 j mg”
lipid (Gnaiger, 1983).

Determination and calculation of energy
consumed

Energy consumed (Ec) of samples was calculated
by amount of formazan formed based on an
extinction coefficient of 15,900M"'cm”. From a
theoretical point of view, formation of 2 ul
formazan will use 1 pmol of O, and the quantity of
consumed oxygen was transformed into energetic
equivalents (484 kJ/mol O,) (Gnaiger, 1983).
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Statistical analyses

Three replicates were conducted for all the
biochemical assays and data were subjected
to analysis of variance (ANOVA) and mean
comparison performed in a split-plot in time
design  (combined analysis).  Statistical
analyses were performed at P = 0.05 by
Tukey’s test using the SAS software (SAS
Institute, 2011).

Results

In this study effect of bare CNTs in addition to
synthesized CNTs/TiO,-NPs was surveyed on
the G. pyloalis‘s energy budget. Transmission
electron  microscope (TEM) image of
CNTs/Ti0,-NPs is shown in the Fig. 1.

250 nm

Mag =16.700 KX DayPetronic Company W

Figure 1 TEM image of synthesized CNTs/Ti0,-NPs. The structure of synthetic nanoparticles is resulting the
bond of carbon nanotubes (CNTs) to TiO, nanoparticles (TiO,-NPs). The hybrid structure, CNTs provide the
essential surface needed to bind TiO,-NPs in a specific way that can be seen in the TEM image. This bond
enhances the special properties of TiO, nanoparticles such as photocatalytic activities. The structure of bare

CNTs can be seen in the TEM image.
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Comparison of the amount of lipid in treated
larvae by specified value of CNTs showed that
unlike the control, the amount of lipid
significantly decreased in the case of all
concentrations of CNTs by increasing treatment
time (Fig. 2). Although the highest amount of
lipid was observed for control (36 joule/larvae)
after 72 h, the lowest amount (4 joule/larvae) was
calculated in the larvae treated with 500 ppm of
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CNTs for the same period of time (Fig. 2). As
shown in the Fig. 2 lipid levels of treated larvae
by specified value of CNTs/TiO,-NPs had a
similar trend to CNTs. This means that reduction
of lipid in treated larvaec occurs by increasing
concentration level and treatment time. The only
difference that can be noted is a greater reduction
of lipid in the larvae treated with CNTs/TiO,-NPs
than in those treated with CNTs (Fig. 2).
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Figure 2 Average energy equivalents of lipids in Glyphodes pyloalis; 24, 48 and 72 hours after treatment with
different concentrations of (A) CNTs, and (B) CNTs/TiO,-NPs.
Means followed by similar letters showed no significant difference from each other by Tukey’s test (P < 0.05).
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Amount of carbohydrate content in the
treated larvae by each tested concentrations of
CNTs, like the control, was not affected by
increasing time of exposure (Fig. 3A). Results
showed that amount of carbohydrate contents of
larvae treated with all concentrations of CNTs
significantly decreased compared to the control.
However, the effect of different treatments of
CNTs (i.e. 100-500 ppm) was similar in the
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reduction of carbohydrate contents (Fig. 3A).
Results also showed that in the case of
CNTs/TiO-NPs  treatments,  carbohydrate
contents were affected by both concentration
and time of exposure to treatments, except for
500 ppm (Fig. 3 B). Unlike CNTs, carbohydrate
content significantly increased with increase in
time of exposure to different concentrations of
CNTs/Ti0,-NPs, except for 500 ppm (Fig. 3 B).

@ 24h 48hE 72h

300

500

& 24h& 48h& 72h

300 500

Concentration (ppm)

Figure 3 Average energy equivalents of carbohydrate in Glyphodes pyloalis; 24, 48 and 72 hours after treatment
with different concentrations of (A) CNTs, and (B) CNTs/TiO,-NPs.
Means followed by similar letters showed no significant difference from each other by Tukey’s test (P < 0.05).
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Glycogen content of the treated larvae with
100, 200 and 500 ppm of CNTs, like the
control, showed significant increase after 48 h.
However, in the case of 300 and 400 ppm
concentrations, this significant increase was
shown after 72 h (Fig. 4 A). It should be noted
that glycogen content after 24 h treatment with
500 ppm of CNTs was significantly lower than
those of 100, 200 and 300 ppm (Fig. 4A).
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Results of treatments by CNTs/TiO,-NPs
showed that glycogen content significantly
increased after 72 h except for 300 ppm.
Generally, results showed that effect of CNTs
which was coupled to TiO,-NPs appeared later
than that of bare CNTs (Fig. 4). This result may
indicate a faster effect of bare CNTs on the
glycogen content of treated larvae than that of
CNTs/TiO-NPs.
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Figure 4 Average energy equivalent of Glycogen in Glyphodes pyloalis; 24, 48 and 72 hours after treatment
with different concentrations of (A) CNTs, and (B) CNTs/TiO,-NPs.
Means followed by similar letters showed no significant difference from each other by Tukey’s test (P < 0.05).
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Effect of different concentrations of CNTs

appears in the form of a decrease in the
amount of protein content of fifth instar larvae all concentrations
of G. pyloalis. So, after 24 h of exposure to protein  content

each concentration, protein content
significantly decreased (Fig. 5). Furthermore,
all tested concentrations of CNTs, except for
100 ppm, prevented normal increase in protein
content up to 72 h of exposure (Fig. 5). The
amount of protein content in the fifth instar
larvae of G. pyloalis when exposed to
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CNTs/TiO,-NPs showed different trend to that
of CNTs (Fig. 5). After 72 h of treatment with
of CNTs/TiO,-NPs,
significantly
Furthermore, it should be noted that the level
of total protein in the exposure to pure CNTs
was less than that in the exposure to CNTs in
combination with TiO,-NPs (Fig. 5). This
showed that the effect of bare CNTs on
the protein contents is faster and greater than
that of CNTs/Ti0,-NPs (Fig. 5).
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Figure 5 Average energy equivalent of protein in Glyphodes pyloalis; 24, 48 and 72 hours after treatment with

different concentrations of (A) CNTs, and (B) CNTs/TiO,-NPs.

Means followed by similar letters showed no significant difference from each other by Tukey’s test (P < 0.05).
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Reserve energy was calculated by summation
of total carbohydrate, glycogen, lipids and protein
contents (Fig. 6). Ea for untreated larvae (control)
and 100 and 200 ppm concentrations significantly
increased as time of exposure increased (Fig. 6).
However, using concentrations of 300 and
400ppm of CNTs, Ea significantly decreased after
48 h rather than 24 h and then increased after 72 h
of treatment (Fig. 6). Generally, results showed
that, except for 500 ppm, time of exposure to
other tested concentrations of CNTs could affect
the reserve energy of the fifth instar larvae of G.
pyloalis. The lowest amount of Ea was recorded
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for larvae treated with 500 ppm of CNTs (Fig. 6).
In  general,  CNTs/TiO,-NPs  treatments
significantly decreased Ea compared to the
control in all three time points of exposure (Fig.
6). At 100 ppm of CNTs/TiO,-NPs Ea
significantly increased from 24 h to 72 h showing
the same trend as the control. On the contrary at
200, 300, 400 ppm of CNTs/TiO-NPs, Ea
significantly decreased from 24 h to 72 h of
treatment (Fig. 6). The lowest amount of Ea was
calculated in the exposure to 400 and 500 ppm of
CNTs/TiO,-NPs after 48 h and 24 h, respectively

(Fig. 6).
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Figure 6 Average energy equivalent of energy reserves (Ea) in Glyphodes pyloalis; 24, 48 and 72 hours after
treatment with different concentrations of (A) CNTs, and (B) CNTs/TiO,-NPs.
Means followed by similar letters showed no significant difference from each other by Tukey’s test (P < 0.05).
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Energy consumption (Ec) during the exposure
times was calculated based on the mitochondrial
ETS activity and the results pertaining to the CNTs
and CNTs/TiO,-NPs treatments are presented in
the Fig. 7. Results showed that by increasing time
of exposure to 100 ppm of CNTs, from 24 to 72 h,
Ec of the fifth instar larvae of G. pyloalis
significantly decreased compared to the control
(Fig. 7). There was no significant difference
between Ec of larvae larvae treated with 200 and
300 ppm of CNTs and Ec of the control in all three
time points of treatments. However, using 400 ppm
of CNTs, Ec was significantly decreased after 72 h
compared to the control. Significant reduction of
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Ec compared to the control was also recorded after
24, 48 and 72 h of treatment with 500 ppm of
CNTs (Fig. 7). Comparison of CNTs/TiO,-NPs
treatments with the control at each time point
showed that Ec significantly increased at all three
time points of the exposure to the concentrations of
100 and 200 ppm. Furthermore, after 24 h of
exposure to 200 and 300 ppm of CNTs/TiO,-NPs
Ec increased more than that of the control.
However, 24 h of exposure, to 500 ppm of
CNTs/TiO-NPs  significantly — decreased Ec
compared to the control (Fig. 7). The highest
amount of Ec was recorded after 24 h of treatment
with 100 and 200 ppm of CNTs/TiO,-NPs (Fig. 7).
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Figure 7 Average energy equivalent of energy consumed (Ec) in Glyphodes pyloalis; 24, 48 and 72 hours after
treatment with different concentrations of (A) CNTs, and (B) CNTs/TiO,-NPs.
Means followed by similar letters showed no significant difference from each other by Tukey’s test (P < 0.05).
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Results also showed that contrary to Ec,
generally CEA was significantly decreased as the
concentration of CNTs treatments increased (Fig.
8). CEA was not affected by 100 ppm of CNTs
after 24 h. However, under treatment with other
concentrations of CNTs (i.e. 200, 300, 400 and
500 ppm) CEA significantly decreased compared
to the control in all three time points (Fig. 8).
Interestingly results showed that the reduction of
CEA amounts of treated larvae at each time point
of exposure to CNTs is in a dose response related
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manner (Fig. 8). As shown in Fig. 8, there was
very significant reduction in CEA amount of all
treatments with CNTs/TiO,-NPs compared to the
control. Among different concentrations there was
significant enhancement in CEA amount just after
72 h treatment with 100 and 500 ppm of
CNTs/TiO-NPs (Fig. 8). Hence, there was no
significant difference between CEA amount of
treated larvae at concentrations of 200, 300 and
400 ppm of CNTs/TiO,-NPs in all three time
points (Fig. 8).

E24h ©B48h ®72h

400

@#24hE48h 872 h

Concentration (ppm)

Figure 8 Average energy equivalent of cellular energy allocation (CEA) in Glyphodes pyloalis; 24, 48 and 72
hours after treatment with different concentrations of (A) CNTs, and (B) CNTs/TiO,-NPs.
Means followed by similar letters showed no significant difference from each other by Tukey’s test (P < 0.05).
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Analysis of variance (split plot in time)
showed that generally the amount of protein,
lipid, glycogen, Ec, Ea and CEA in treated
larvae were significantly affected by: (1)
concentrations of treatments, (2) kind of
treatments (3) time of exposure to the
treatments, (4) interplay effect of concentration
and exposure time and (5) interplay effect of
concentration, exposure time and kind of
treatments. This means that the effect of CNTs
concentrations on the amount of lipid,
glycogen, carbohydrate, protein, Ec, Ea and
CEA is correlated to the length of exposure
time. Furthermore, analysis of variance showed
that the effect of CNTs/TiO,-NPs on the
amount of lipid, glycogen, carbohydrate,
protein, Ec, Ea in treated larvae is similar to
those of CNTs treatments and affected by the
length of exposure time.

Discussion

Nowadays with growing application of
nanotechnology in various fields, mainly food
and feed industries, risk assessment of possible
side effects of applied nanotechnology is
inevitable (Li et al., 2019). Toxicity of CNTs is
specified by its composition, geometry and
surface functionalization. So, moderate dosages
of CNTs without significant functionalization
has shown significant toxicity to human or
animal cell lines (Venkataraman et al., 2019).
The reduction of total lipid in the exposure
to CNTs in a dose response related manner can
be due to increase in the levels of lipid
peroxidation. This is one of the results of the
oxidative stress which arises from generation of
reactive oxygen species (ROS) and free radicals
in the exposure to CNTs. On the other hand, the
reduction of lipid can be justified by
consumption of lipids as the first energy source
during exposure to the environmental
contaminations (De Coen and Janssen, 1997,
Novais et al., 2013; Amorim et al., 2012). The
same trend of reduction of total lipid in the
exposure to CNTs/TiO,-NPs is justified by the
mentioned reasons. It is worth noting that our
previous study on the toxicity of bare TiO,-NPs
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showed the role of these nanoparticles in the
reduction of lipid content (Memarizadeh et al.,
2014a). Thus, more inhibitory effect of
CNTs/TiO»-NPs on lipid production can be
correlated to the effect of TiO, nanoparticles
that are added to CNTs.

Once again by reduction of carbohydrate
content in a dose response related manner in the
exposure to both CNTs and CNTs/TiO,-NPs;
the possibility of consumption of the reserved
energy sources proves to be as the cost of

detoxification of these nanoparticles by
organism.

Swiatek and Bednarska (2019) pointed out a
decrease in carbohydrate content in the

carthworm E. andrei, exposed to Zn-NPs
(Swiatek and Bednarska, 2019). Khalil (2015),
reported a decrease in carbohydrate content in
the guts of Pheretima hawayana Rosa
earthworms exposed to TiO,-NPs (Khalil, 2015).

Lipids in  particular  along  with
carbohydrates are highly efficient and
preferred storage components rather than
protein substrates to be mobilized under toxic
stress (Smolders et al., 2003).

There was no specific trend in the case of
glycogen content in the larvae exposed to CNTs
and also to CNTs/TiO,-NPs. Hence, increase of
tested concentrations of nanoparticles, contrary
to lipid and carbohydrate contents, couldn’t
effect to glycogen content in a dose response
related manner. It should be noted that under
the influence of CNTs/Ti0,-NPs, impact on the
glycogen content occurred more intensely than
that of CNTs and in less time of exposure. This
result indicated the effect of TiO, nanoparticles
on the physiology of treated insects when CNTs
coupled to TiO, nanoparticles were used
(Memarizadeh et al., 2014a). Holmstrup et al.
(2011) reported decrease of glycogen content in
Dendrobaena octaedra Savigny earthworms by
increase in the concentrations of Ni, Al, and Zn
treatments after specific time of exposure
(Holmstrup et al., 2011).

Comparison of protein content of larvae
treated with CNTs and CNTs/TiO,-NPs showed
that protein content was affected by bare CNTs
more than that by CNTs conjugated to TiO,
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nanoparticles. Since in the case of treatments by
bare CNTs, larvae were treated with higher
concentrations of CNTs than that of
CNTs/TiO,-NPs  treatments; it could be
concluded that CNTs causes further disruption
by protein content. Oxidation of proteins can be
one of the toxicity mechanisms of
nanoparticles. Furthermore, nanoparticles by
penetrating through the exoskeleton of insects
and entering the intracellular spaces bind to
sulfur from proteins which leads to the rapid
denaturation of organelles and enzymes (Rai et
al, 2014). Similarly, Fouad et al. (2018)
observed significantly decreased levels of total
protein in Aedes albopictus Skuse and Culex
pipiens Pallens when exposed to Ag-NPs.
Proteins as fundamental components can
participate in the metabolism only during
extreme  energy  deficiency.  Therefore,
metabolic compensation is performed by
elevated protein  turnover under  stress
conditions (Sokolova et al., 2012).

Interruption of energy transduction is
considered as one of the toxicity mechanisms of
nanoparticles. The reduction of energy reserves
could be due to decreased food consumption
and/or increased metabolic activity (De Coen
and Janssen, 2003; Novais et al, 2013).
Significant effects on the components of the
energetic budget also could be caused by
influence of nanoparticles (Novais et al., 2013).
The increase in the available energy reserves
according to increase of exposure time which
was shown in treatments with 100 and 200 ppm
of CNTs, similar to the control, was mainly due
to increased glycogen levels. Such an increase
has been also observed for Enchytraeus albidus
Henle exposed for 8 days to three different
pesticides (dimethoate, atrazine, and
carbendazim) and also E. andrei after exposure
to zinc-NPs due to increased lipid and protein
levels (Swiatek and Bednarska, 2019; Novais et
al., 2013). In the present study, similar trend of
changes in available energy reserves levels to the
control was observed only for 100 and 200 ppm
of CNTs treatments. And in the case of other
treatments there wasn’t specific manner over
three time points of treatments. However, In the
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case of treatments by CNTs coupled with TiO,
nanoparticles (CNTs/TiO,-NPs), all
concentrations except for 100 ppm showed
completely different behavior compared to the
control over three time points of treatments.
These results once again showed the effect of
Ti0, nanoparticles on the total energy budget of
organism (Memarizadeh et al., 2014a). Swiatek
and Bednarska (2019) showed that there were no
differences in carbohydrate, protein, and lipid
levels and Ea for any of the applied treatments
and for any of time points of exposure to ZnO-
NP except for 500 ppm, indicating that none of
the toxicants had significant effects on the
components of the energetic budget (Swiatek
and Bednarska, 2019).

An increase in Ec that was observed in all
concentrations of CNTs/TiO,-NPs and all three
time points of exposure except for higher
concentration (i.e. 500 ppm) in comparison to
the control, showed that the uptake, distribution
and excretion of excess CNTs conjugated to
TiO, can increase the energetic cost.
Comparison between CNTs and CNTs/TiO,-
NPs treatments showed that CNTs alone
couldn't increase the energetic cost in the trend
which was observed for CNTs/TiO,-NPs
treatments. Our last study on the impacts of
TiO, nanoparticles on the fifth instar larvae of
G. pyloalis confirmed the high effect of these
nanoparticles on the increase of Ec as an
energetic cost (Memarizadeh et al., 2014a).
Although no differences in Ec were reported in
the earthworm E. andrei after exposure to zinc
in nanoparticle and ionic form in the
contamination phase; but a significantly
increased Ec just for 500 ppm of ZnCl,,
indicated a strong effect of this treatment on
earthworm metabolism even after completion of
exposure (Swiatek and Bednarska, 2019).

Amount of CEA under influence of CNTs
was reduced in a dose response related manner
compared to the control in all three time points
of treatment. Negative correlation between
CNTs concentrations and the net energy budget
indicated that energy was spent to overcome the
toxicity of CNTs and thus there will be less
energy available for other physiological
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functions (Novais et al., 2013). However, under
influence of CNTs/Ti0,-NPs, despite the sharp
decline in CEA values for all concentrations,
except for the lower concentration of treatments,
there weren't significant reductions in CEA from
48 h to 72 h of treatment. This means that 48 h is
a sufficient time for incidence significant effects
of CNTs/TiO,-NPs on the energy budget of
organism. Reduced energy budget resulted in the
extra energy requirements for detoxification
(Amorim et al., 2012).

Results of present study showed that the
energy metabolism rate of G. pyloalis was
affected by CNTs and also in particular by
CNTs/TiO,-NPs. Thus, energy reserves were
reduced and mitochondrial electron transport
system activity changed due to increased
cellular respiration. Consequently, using CEA
test as an early indicator and by indirect
measurement of possibility of an organism’s
survival, the toxic effects of CNTs and CNTs
when coupled to other nanoparticles such as
TiO, could be foreseen could be detected.
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