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Introduction

Abstract: The western flower thrips (WFT), Frankliniella occidentalis
(Pergande) (Thysanoptera: Thripidae) is an invasive pest in greenhouse with
high potential to cause damage to crops. There are a limited number of effective
insecticides to manage this pest and several cases of chemical control failures
have been reported in Iran which can be due to resistance to insecticides. To
evaluate the status of insecticide resistance and possible resistance mechanisms,
eight Iranian strains of F. occidentalis, collected from Tehran, Markazi, Alborz,
Qazvin, Isfahan, Yazd (M and B) and Kerman provinces, were assayed against
dichlorvos as a recommended insecticide for chemical control of thrips.
Compared with the susceptible strain (Isfahan), two strains collected from Yazd
had the lowest susceptibility to dichlorvos (Resistance Factor = 2.14 and 2.04
fold). Bioassay by synergists and enzyme assays demonstrated interfering of
carboxyl esterase and glutathion S- transferase in Yazd M strain. The esterase
inhibitor, triphenyl phosphite (TPP), and Glutathione S-transferase inhibitor,
diethyl maleate (DEM), synergized the toxicity of dichlorvos in the Yazd M
strain, (Synergistic Ratio = 5.28 and 1.79 fold, respectively). Also,
carboxylesterase (for a- naphtyl acetate and - naphtyl acetate) and glutathion S-
transferases activities in this population were 1.69, 7.31 and 0.97 fold higher
than in the Isfahan strain. Furthermore, dichlorvos resistance did not
significantly diminish after several months. Based on our results, we suggest that
dichlorvos should be removed from the control program of this pest.

Keywords: carboxylesterase, glutathione s-transferase, bioassay, stability of
resistance

The western flower thrips (WFT), Frankliniella
occidentalis is one of the most destructive pests
that attacks different family of agricultural,
horticultural and ornamental crops throughout
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the world (Lewis, 1997; Wang et al., 2015). This
highly polyphagous pest damages crop directly
and indirectly. Direct damage occurs by feeding
on plant tissues (Bielza et al., 2008). Indirect
damage is due to transmitting plant viruses of the
genus Tospovirus (Riley et al., 2011). Damage
caused by this pest is estimated at millions of €
worldwide  (Mirnezhad et al, 2010).
Accordingly, it is considered the most important
species in the thysanoptera order (Reitz, 2009).
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The main strategy to manage WFT
populations is the use of insecticides whereas in
any given situation and crop, the range of
compounds and formulations that are effective for
the control of thrips is quite limited (Contreras et
al., 2008). Also, control of this pest is difficult due
to some behavioral and physiological features
such as polyphagous nature, high reproductive
potential, short generation time, haplodiploid
reproductive system, cryptic habits (thigmokinetic
behavior) and insecticide resistance (Jensen,
2000b; Contreras et al., 2010; Wu et al., 2018).
Frankliniella occidentalis is the insect pest with a
high potential to develop resistance to insecticides
and it is capable to maintain resistance for a long
time in the absence of insecticide pressure
(Contreras et al., 2008; Demirozer et al, 2012).
Insecticide resistance in WFT populations has
been reported to various insecticide classes
including organophosphorus (OPs), carbamates,
pyrethroids,  avermectins ~ and  spynisons
(Immaraju ef al., 1992; Breadsgaard, 1994; Zhao
et al., 1995; Jensen, 2000a; Espinosa et al., 2002;
Bielza et al., 2007; Contreras et al., 2010; Chen et
al., 2011; Meng et al., 2018).

There are several reports on the mechanisms
of insecticide resistance in F. occidentalis. Major
mechanism of resistance to insecticides is
metabolic (increased detoxification) and in some
cases (spinosad) in target site insensitivity
(Immaraju et al, 1992). WFT can develop
resistance to insecticides using more than one
mechanism, and multiple mechanisms can
combine to contribute to each insecticide
resistance. These factors have led to a large
number of ways by which WFT has developed
resistance to many insecticides (Demirozer ef al.,
2012). OPs resistance related to esterase activity
has been previously reported in western flower
thrips (Jensen, 2000a; Maymo et al., 2002). WFT
was officially reported for the first time in 2004 in
Iran and has spread throughout most provinces for
almost fifteen years (Jalili Moghadam and
Azmayeshfard, 2004). In Iran, control of WFT
involves repeated application of insecticides.
Dichlorvos is a recommended insecticide used
extensively and intensively to control WFT
(Gholami and Sadeghi, 2016). Recently, the
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farmers have reported the insufficient control of
the WFT by dichlorvos. Multiple applications and
selective pressure of insecticides are potential
causes of reports of control failures of this pest.
Therefore, the purpose of the current study
is to define the status of dichlorvos resistance,
stability of insecticide resistance and the
mechanisms that confer resistance to dichlorvos
in greenhouse strains of F. occidentalis
collected from several provinces in Iran.

Materials and Methods

Insect strains

To assess resistance development to dichlorvos in
F. occidentalis, cight greenhouse strains were
collected from different provinces in Iran
including Tehran (THN), Alborz (ABZ), Markazi
(MRI), Esfahan (IHN), Kerman (KMN), Yazd
(YZM and YZB) and Qazvin (QZN) during 2017
to 2018. Characteristics of the greenhouse strains
of WFT used in the bioassays and enzyme activity
assays are summarized in Table 1. These strains
were reared under insecticide-free conditions in
room chamber on fresh green bean pods
(Phasaeolous vulgaris) at 25 £ 1 °C, 65 £ 5%
R.H. and a photoperiod of 16 L:8 D in the
Department of Plant Protection, the Campus of
Agriculture and Natural Resources, University of
Tehran, Karaj, Iran (Gholami et al., 2015).

Insecticides and chemicals

Commercial formulation of dichlorvos EC50%
(IRAC code 1B) (GolShimi Sepahan Co., Ltd.,
Iran) was used in insecticide bioassay. The
synergists, piperonyl butoxide (PBO; 90%),
triphenyl phosphate (TPP; 97.2%), diethyl
maleate (DEM; 97%) and the chemicals, 1-
chloro-2,4-dinitrobenzene (CDNB) and reduced
glutathione (GSH; 98%) were obtained from
Merck (Darmstadt, Germany). o-naphthyl
acetate (a-NA; 98%), B-naphthyl acetate (8 -
NA), fast blue RR salt, bovine serum albumin
(BSA), coomassie brilliant blue G-250, 5,5'-
dithio-bis-2-nitrobenzoate (DTNB; 99%) and
acetylthiocholine iodide (ATChI; 98%) were
purchased from Sigma Aldrich (St. Louis, MO,
USA).



Gholami et al.

J. Crop Prot. (2020) Vol. 9 (2)

Table 1 Characteristics of the greenhouse strains of Frankliniella occidentalis (location, date and host plant

source) used in the bioassays and biochemical assays

Code of  Location of Latitude (N) and Date of Insecticide regime used Host plant Pests on

population collecting site longitude (E) collection host plant
(Province)

HN Isfahan 32°39'16.66" N, 2017 Deltamethrin and OPs insecticides Pepper Whitefly-
(Isfahan) 51°404.74"E December Thrips-Mite

THN Varamin 35°19'30.87"N, 2017 June samples were collected 10 days after Eggplant  Thrips-Mite
(Tehran) 51°38'49.92"E Oberon treatment

MRI Aaveh 35°48'10.20"N, 2017 samples were collected 10 days after Eggplant ~Whitefly-
(Markazi) 50°25'32.33"E  August mixture  of  dichlorvos  and Thrips-Mite

abamectin treatment

ABZ Nazar Abad 35°45'52.1"N, 2017 thirty  selection  steps  with Strawberry Thrips-Mite
(Alborz) 50°5021.9"E September dichlorvos and abamectin

QZN Alborz Industrial 36°10'51.8" N, 2017 eight selection steps with dichlorvos Cucumber Whitefly-
Park 50°05'06.5" E September and  abamectin, samples were Thrips-
(Qazvin) collected 20 days after abamectin, Leafminer

malathion and imidacloprid treatment

YZM Khavidak 31°79'98.65" N, 2018 May Deltamethrin and dichlorvos- Eggplant  Thrips-
(Yazd M) 54°50'81.09"E Whitefly-Mite

YZB Ahmad Abad 31°47'08.9" N, 2018 June Spinosad, malathion, dichlorvos and Eggplant Thrips-Mite
(Yazd B) 54°21'13.3" E proteus

KMN Jiroft 30°51'51.8" N, 2018 May eight selection steps with and OPs Strawberry Thrips-Mite
(Kerman) 50°05'06.5" E insecticides

Bioassay water (40: 60% v: v) at the desired concentration

The green bean pod sections-dipping method
was used in bioassay based on the method
described by IRAC (test method 014)
(www.irac-online.org). The LCsy of dichlorvos
were estimated on the collected strains. A hole (3
cm in diameter) was made on each plastic Petri
dish cap and was covered with silk mesh to
provide adequate ventilation. The sections of
green bean pod, 2 cm in length, were completely
immersed in insecticide solutions for 30 seconds
and were air-dried. Then, they were put into a
Petri dishes (one section per each Petri dish) and
twenty 2™ instar larvae were placed into each
dish. Petri dishes were kept at 25 + 1 °C under a
L16: DS. Deionized water was used as a control.
At least five concentrations and three replicates
were used per concentration. Mortality was
recorded 24 hours after treatment. Thrips were
considered dead when they were unable to move
due to brush stimulation

Synergistic effect

A concentration of 1000 mg/l of the synergists
(mortality less than 10%) was applied 2 hours
before the insecticide treatment. The synergists
were dissolved in acetone and added to deionized
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and Petri dishes were coated with 2 ml of synergist
solution for 10 min before discarded. The 2™ instar
larvae were incubated in the synergist coated plates
for 2 hours before transferring to the new Petri
dishes containing insecticide-treated green bean
pods. Mortality was recorded after 22 hours
(Nazemi et al., 2016). Deionized water was used as
a control and assays were replicated three times.

Stability of resistance

A decline in resistance to dichlorvos in all strains
were estimated by dividing the secondary LCs
value (obtained from the second bioassay after
several months of the rearing) by the primary
LCs value (Contreras et al., 2008).

Detoxification enzyme assays

Protein measurement

Total protein content for all enzyme extract
samples was determined according to Bradford
(1976). The bovine serum albumin was used as
a standard.

Carboxylesterase activity
According to Chen et al. (2011), about 80 2™ instar
larvae of each strain were homogenized in 0.5 ml
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phosphate buffer (0.1 M, pH 7.5) containing Triton
X100 (0.1% v/v). The homogenates were
centrifuged at 10,000 g for 5 min at 4 °C. The
supernatants were separated as an enzyme source
and were kept at -80 °C. Carboxylesterase activity
using a-NA and B-NA as substrates were measured
according to the method of van Asperen (1962)
with slight modification. Briefly, 200 ul of 30 mM
a-NA or B-NA, 20 pl of enzyme preparation and
50 ul Fast Blue RR (0.01% w/v) were added to
each well of a 96-well plate. Optical density of a-
naphtol and B-naphtol were recorded continuously
for 20 min using a microplate reader at 450 and
540 nm, respectively (EIx808, Bio-Tek Instruments
Inc., Winooski, VT, USA). Carboxyl esterase
activity was presented as pmole min"'mg” protein.

GST activity

About 80 2™ instar larvae of each strain were
homogenized in 0.5 ml phosphate buffer (0.1
M, pH 7.5) and homogenates were centrifuged
at 10,000g for 5 min at 4 °C. The supernatants
were separated to measure the activity of GST
and were kept at -80 °C. GST activity was
determined using CDNB as substrate according
to the method of Chen et al. (2011) with slight
modification. Ten pl of enzyme extract was
mixed with 200 ul of 63 mM CDNB and 10
mM reduced glutathione (GSH) in 0.1 M
sodium phosphate buffer (pH 6.5). Any change
in absorbance was recorded continuously for 20
min at 340 nm using the microplate reader. The
activity of GST was determined using the molar
extinction coefficient of 9.6 mM ' cm ' for the
CDNB (Habig et al., 1974).

Acetylcholinesterase (AChE) activity

AChE activity was determined according to the
method of Ellman et al. (1961) with slight
modification, using ATChI as substrate. Briefly,
the reaction mixture consisting of ATChI (1.5
mM), DTNB (1 mM) and enzyme preparation (20
ul) was prepared in a final volume of 270 ul with
phosphate buffer (0.1 M, pH 8.0). The absorbance
was measured continuously every 1 min for 20
min at 405 nm. Enzyme activity was calculated
using the extinction coefficient of 13.6 mM ' cm’
for 5-thio-2- nitrobenzoate (Ellman et al., 1961).
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Data analysis

Bioassay data were analyzed by probit using the
Polo-Plus software version 2.0 (LeOra Software,
Berkeley, CA). Mortality was corrected using
Abbott’s formula for each probit analysis (Abbot,
1925). Resistance factors (RF) were calculated by
dividing the LCs, of the resistant strain by the LCs,
of the susceptible strain. Synergistic ratios (SR)
were calculated by dividing the LCsy of the
insecticide alone by the LCs, of the insecticide plus
synergist (Breadsgaard, 1994; Espinosa et al.,
2005). Statistical difference of the resistance to
insecticides between strains was estimated by
Lethal Dose Ratio (LDR) and the 95% confidence
intervals of resistance factors and synergism factor
were estimated by using the method described by
Robertson et al. (2017). Enzyme activities were
stated as mean + standard error of the mean (SE).
Statistical analysis was performed by analysis of
variance (ANOVA), and comparisons of the means
were made using Tukey's test in SAS 9.1 (SAS,
2004) (P-value < 0.05).

Results

Resistance to dichlorvos

Variation in susceptibility among the eight
greenhouse strains was moderate in the case of
dichlorvos (Table 2). The most sensitive strain was
IHN. The highest LCs, value was observed in
YZM strain (RF = 2.14 fold). By the LDR analysis,
LCs, value of IHN, THN and QZN were
statistically significantly different in comparison to
YZM strain, whereas there were no significant
differences among the MRI, ABZ, YZM, YZB and
KMN strains (P-value < 0.05). In the susceptible
strain (IHN), synergistic effects were not observed,
when DEM, PBO and TPP were applied with
dichlorvos. Whereas toxicity of dichlorvos was
synergized by DEM (SR = 1.79) and TPP (SR =
5.28) (Table 2) in the YZM strain. Also, PBO had
no effect on the activity of detoxifying enzymes.

Stability of resistance to dichlorvos

Results of the stability of insecticide resistance
in F. occidentalis are shown in Table 3. There
were no changes in susceptibility of the IHN
strain to insecticides after rearing in the
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laboratory in the absence of selection pressure
for 8 months. In the YZM strain, RF values
showed stability, without significant difference
during 5 months (from RFs, = 2.14 to 2.12 fold).

Metabolic enzyme activities

Carboxyl esterase

Among the populations, the YZM expressed
higher levels of carboxyl esterase activity
towards a-NA and B-NA (3.75 + 0.42 and 5.01
+ 0.06 mmol product min'mg’ protein,
respectively), in which carboxyl esterase
activity was 1.69 and 7.31 fold higher than that
of susceptible strain (IHN). However, the
lowest activity was obtained from the QZN
strain activity ratio of which were 0.59 and 1.23
for a-NA and B-NA, respectively. The analysis
variance of carboxylesterase activities showed

significant difference between YZM and IHN
strains (F-value = 16.73, P-value < 0001, df: 7).
(Table 4).

Gluthathione S-
acetylcholinesterases
GST activity in the ABZ strain was 0.93- fold
higher than that of IHN strain. However, GST
activity was significantly higher in KMN than
IHN (AR = 1.33 fold). All strains except the
KMN and MRI were not significantly
different in GST activity (F-value = 19.26, P-
value < 0001, df: 7). (Table 5). Also, results
of AChE activity from different strains are
presented in Table 5. The YZM had the most
ACHhE activity among the tested strains (AR =
14.3 fold) (F-value = 17.54, P-value < 0001,
df: 7).

transferases and

Table 2 Lethal concentrations, slopes, resistance ratios and synergistic ratios of dichlorvos against different strains

of Frankliniella occidentalis.

Strain | Treatment/synergist ~ Number of  Slope LCs (mg formulated RRs - SRy, °
Insects (= SE) litre ) (95% CL) (95% FL) (95% FL)
IHN*  Dichlorvos 265 2.81+£032  334.10 1.0 -
(283.49-389.33)
+ DEM 226 4.05+0.67 448.3 1.34 0.74
(370.48-519.69) (1.07-1.68) (0.59-0.93)
+PBO 218 3.92+0.71 364.15 1.08 0.91
(284.86-427.96) (0.85-1.39)  (0.71-1.17)
+ TPP 211 3.13+£0.44 322.53 0.96 1
(258.50-361.28) (0.75-1.24) (0.8-1.33)
THN Dichlorvos 274 4.96 + 0.66 369.97 1.10 -
(317.31-415.65) (0.9-1.36)
+ DEM 299 6.37 +£0.83 416.67 1.24 0.88
(378.05-450.13) (1.04-1.49) (0.75-1.03)
+PBO 260 2.31+0.37 174.34 0.52 2.12
(118.33-220.7) (0.37-0.72) (1.53-2.92)
+ TPP 328 2.72+£0.36 209.82 0.62 1.76
(132.51-269.77) (0.48-0.8) (1.39-2.23)
MRI Dichlorvos 295 5.04+£0.84 598.59 1.79 -
(514.78-667.28) (1.44-2.18)
+ DEM 280 2.86 £ 0.66 541.26 1.62 1.1
(396.54-646.2) (1.24-2.11) (0.86-1.41)
+PBO 298 2.33+0.44 480.46 1.43 1.24
(356.58-589.51) (1.34-2.18) (0.84-1.19)
+ TPP 274 2.10+0.27 274.18 0.82 2.18
(207.46-339.63) (0.61-1.09) (1.66-2.86)
ABZ Dichlorvos 290 8.41+1.45 673.39 2.01 -
(605.57-721.57) (1.68-2.4)
+ DEM 226 5.17+£0.72 540.2 1.61 1.24
(478.25-594.34) (1.33-1.95) (1.09-1.42)
+PBO 218 4.87 +£0.69 614.55 1.83 1.09
(552.2-675.49) (1.52-2.21) (0.96-1.24)
+ TPP 230 4.78 £ 0.65 516.34 1.54 1.30
(454.81-569.57) (1.27-1.87) (1.13-1.49)
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Table 2 continued.
Strain | Treatment/synergist ~Number of Slope LCsy (mg formulated RRsy z SRy, °
Insects (= SE) litre ") (95% CL) (95% FL) (95% FL)
QZN Dichlorvos 284 5.49 +0.86 433.23 1.29 -
(359.42-486.68) (1.04-1.6)
+ DEM 226 14.18 £3.19  552.48 1.65 0.78
(475.59-581.78) (1.39-1.96) (0.66-0.92)
+PBO 198 3.42+0.62 424.15 1.26 1.02
(338.02-494.97) (1-1.61) (0.81-1.28)
+ TPP 216 3.69 + 0.56 299.21 0.89 1.44
(202.36-376.6) (0.7-1.14) (1.14-1.82)
YZM Dichlorvos 273 1.46 £ 0.19 715.64 2.14 -
(522.98-951.76) (1.53-2.99)
+ DEM 251 1.32+£0.20 397.79 1.19 1.79
(258.7-550.7) (0.8-1.77) (1.12-2.87)
+PBO 251 1.32+£0.20 432.78 1.29 1.65
(280.87-603.58) (0.86-1.93) (1.03-2.65)
+ TPP 259 1.11+£0.21 135.34 0.4 5.28
(51.01-226.13) (0.2-0.8) (2.54-10.98)
YZB Dichlorvos 263 1.32+0.19 684.34 2.04 -
(477.38-932.92) (1.42-2.94)
+ DEM 269 1.32+0.19 302.69 0.95 2.26
(195.15-446.76) (0.62-1.45) (1.28-3.6)
+PBO 275 1.28 £0.19 352.53 1.05 1.94
(220.51-493.14) (0.69-1.6) (1.17-3.22)
+ TPP 255 0.95+0.18 218.86 0.65 3.12
(89.07-358.74) (0.34-1.25) (1.54-6.34)
KMN Dichlorvos 217 432 +£0.76 691.79 2.07 -
(615.31-773.55) (1.7-2.5)
+ DEM 210 4.06 £ 0.68 584.8 1.75 1.18
(507.15-653.78) (1.43-2.13) (1-1.39)
+PBO 207 4.32 £0.69 540.13 1.61 1.28
(464.69-603.26) (1.32-1.97) (1.08-1.51)
+ TPP 203 3.56 +0.68 375.85 1.12 1.84
(272.65-446.44) (0.85-1.47) (1.43-2.35)

"THN (Isfahan), THN (Tehran), MRI (Markazi), ABZ (Alborz), QZN (Qazvin), YZM (Yazd M), YZB (Yazd B), KMN (Kerman).
? Resistance ratio: ratio of LCs, estimations between resistant and susceptible populations.
* Synergist ratio: ratio of LCs, estimations between a population treated with insecticide alone and the same population treated with a mixture
of insecticide and synergist. * Susceptible population.

Table 3 Over time development of resistance to dichlorvos against different strains of Frankliniella occidentalis.

Strain ' Insecticide Month  Number of Insects Slope LCsy (mg formulated RRs,”
(mean + SE) litre ") (95% CL) (95% FL)
IHN Dichlorvos 8 250 2.20+0.28 280.28 0.83
(227.51-337.5) (0.65-1.07)
THN Dichlorvos 10 243 3.14+0.49 487.68 1.45
(408.06-576.5) (1.16-1.83)
MRI Dichlorvos 12 312 1.12+0.28 724.04 2.16
(474.27-1454.64) (1.3-3.6)
ABZ Dichlorvos 7 228 9.31 +1.55 672 2.01
(604.17-722.23) (1.68-2.4)
QZN Dichlorvos 11 227 2.32+0.74 856.68 2.56
(672.74-1466.05) (1.85-3.55)
YZM Dichlorvos 5 273 1.31+0.18 710.75 2.12
(501.25-972.76) (1.48- 3.05)
YZB Dichlorvos 4 263 1.18 £ 0.18 558.67 1.67
(360.61-788.17) (1.11-2.51)
KMN Dichlorvos 4 216 4.12 +0.81 751.01 2.24
(665.73-856.3) (1.84-2.73)

"THN (Isfahan), THN (Tehran), MRI (Markazi), ABZ (Alborz), QZN (Qazvin), YZM (Yazd M), YZB (Yazd B), KMN (Kerman).
? Resistance ratio: ratio of LCs, estimations between resistant and susceptible populations. * susceptible population.
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Table 4 Mean esterase activities with a-naphthyl acetate (a-NA) and B-naphthyl acetate (3 -NA) of the studied

strains of Frankliniella occidentalis.

Strain ! Alpha Activity Beta Activity
(Mean + SE) ** ratio (R/S) * (Mean + SE) ** ratio (R/S) *

IHN’ 2.20+0.24 B-C 1 0.68+0.03 D 1

THN 2.68+£0.13 B 1.21 1.65+£0.07 C 2.41

MRI 2.58£0.12 B-C 1.17 2775+£0.2B 4.01

ABZ 1.38+£0.15D 0.62 1.04 £ 0.05 C-D 1.52

QZN 1.32+£0.08 D 0.59 0.84 +£0.07 C-D 1.23

YZM 3.75£042 A 1.69 5.01 £0.06 A 7.31

YZB 3.67£022 A 1.66 3.03+0.24B 4.42

KMN 1.88£0.25C-D 0.85 3.21+£0.67B 4.68

"THN (Isfahan), THN (Tehran), MRI (Markazi), ABZ (Alborz), QZN (Qazvin), YZM (Yazd M), YZB (Yazd B), KMN (Kerman).

2 carboxylesterase activity was expressed as pmol naphthol/min/mg protein.

3 Means followed by the same letter within a column are not significantly different (Duncan multiple comparison test, P-value < 0001).

4 Activity ratio = R activity/S activity.
5 susceptible population.

Table 5 Mean Glutathione S- transferase and acetylcholinesterase activities with acetylcholine iodide of the studied

strains of Frankliniella occidentalis.

Strain ' Glutathione S- transferase (Mean + SE) >° Activity Acetylcholinesterase (Mean + SE) ** Activity
ratio (R/S) ° ratio (R/S) °

IHN® 0.51+0.01 B 1 0.006 = 0.004 D 1

THN 0.42+0.01 C 0.82 0.040+0.01 B 6.66

MRI 0.29+0.02D 0.56 0.026 + 0.005 B-C 4.30

ABZ 0.48 +£0.02 B-C 0.93 0.027 £ 0.001 B-C 4.50

QZN 0.46 +£0.01 B-C 0.90 0.011 +£0.001 C-D 1.83

YZM 0.54+0.01 B 1.05 0.086 + 0.007 A 14.30

YZB 0.50 £ 0.04 B-C 0.97 0.024 + 0.003 B-C-D 4

KMN 0.68+0.01 A 1.33 0.035+0.002 B 5.83

"THN (Isfahan), THN (Tehran), MRI (Markazi), ABZ (Alborz), QZN (Qazvin), YZM (Yazd M), YZB (Yazd B), KMN (Kerman).
2 Means followed by the same letter within a column are not significantly different (Duncan multiple comparison test; P < 0001).
?Glutathione S- transferase activity was expressed as umol glutathione conjugated/min/mg protein.

* Acetylcholinesterase activity was expressed as pmol 5-thio-2- nitrobenzoate/min/mg protein.

5 Activity ratio = R activity/S activity.
% Susceptible population.

Discussion

Based on the results of present study, the level
of dichlorvos resistance was higher in the
southern provinces (Yazd and Kerman),
whereas, in the central areas such as Alborz,
Tehran and Markazi, LCs, values were lower
(Table 2). This is the result of different patterns
of the insecticide usage and management
programs of greenhouse pests in different
provinces of Iran. In the southern regions, the
OPs have been used for a long time (maybe for
20 years, based on the year of registration of
OPs in Iran), which can affect the OPs efficacy
on strains of WFT distributed in these areas.
These provinces are the main pillars of
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producing greenhouse products such as
cucumber, pepper, eggplant and ornamental
(Baniameri, 2009). Therefore, conventional
insecticides, such as OPs, have been used
intensively. That is why the wvariation of
resistance to dichlorvos among all tested strains
is low (RF from 1.10 to 2.14 fold). In Alborz,
Markazi and Qazvin as noted in Table 1,
dichlorvos has been used with other insecticides
of different chemical classes. But the
application of OPs has been less than other
chemical classes such as neonicotinoids,
pyrethroids and avermectins. Resistance to
dichlorvos in F. occidentalis (Breadsgaard,
1994; Macdonald, 1995; Jensen, 2000b),
Trialeurodes vaporariorum (Sanderson &
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Roush, 1992) and Tetranychus cinnabarinus
(Guo et al., 1998) have been reported by other
researchers. Herron and James (2005) found
that in the fipronil and spinosad resistant strain
of western flower thrips, resistance ratio to
dichlorvos increased from 0.9 to 3.5 fold after
two years. MacDonald (1995) reported the 25-
fold dichlorvos resistance ratio among
seventeen different strains of WFT in the
England and Ireland. There was a relationship
between dichlorvos LCs, value in different
strains of WFT and the number of applications
of this insecticide in the nurseries sampled. The
three strains with the lowest LCs, were not
exposed to dichlorvos for one year prior to
sampling, but six resistant strains were severely
affected by dichlorvos selective pressure.

By removing a special insecticide from the
chemical control program, susceptibility of the
thrips  maybe restored  within  several
generations. In certain cases, resistance is
persevered over many generations after the
removal of selection pressure (Contreras et al.,
2008). Our results implicated that resistance in
YZM and KMN strains was maintained after 5
and 4 months without dichlorvos exposure,
respectively (Table 3). Raymond et al. (1993)
suggested the slight decrease in resistance is
due to the existence of alleles responsible for
amplifications of detoxification enzyme. A
slight reduction in resistance levels may be due
to the negative effects of resistance genes on
fitness components without insecticide selection
pressure or lack of full consolidation of
resistance genes in the gene reservoir (Saddiq et
al., 2016). The decline in the persistence of
insecticide resistance in insecticide free-
conditions varies with the resistant genotype,
nature of selecting agent and intensity of
resistance (Vastrad et al., 2004). According to
Uyenoyama (1986) when the insecticides are
removed from chemical control of a pest, a
reduction in the level of resistance would be
produced by reapplying the original selective
pressure after a while. Contreras et al. (2008)
reported that in the very highly resistant strain
of F. occidentalis to acrinathrin, resistance was
maintained with little change after 5 and 8

202

months without acrinathrin exposure. In another
strain, resistance to methiocarb was maintained
after 5 months without selection pressure. Also,
a slight decrease to formetanate, was observed
in the absence of selection pressure for 8
months. Investigation of resistance stability is
an important issue in insecticide resistance
management (IRM). The stability of insecticide
resistance had been already verified in WFT.
The resistance level of an insect depends on
factors such as detoxification enzymes
including P450 monooxygenase, esterase, and
GST (Jensen, 2000a; Scott and Wen, 2001;
Stevenson et al, 2012). The experiments to
evaluate the role of metabolic detoxification
mechanisms by synergists confirmed that
carboxyl esterase and GSTs are involved in
resistance to dichlorvos therefore we assayed
the activity of these two enzymes in all tested
populations (Table 2). However, synergists are
not entirely specific to each detoxification
enzyme so results obtained from synergists
must be considered with caution (Espinosa et
al., 2005; Lopez-Soler et al., 2011). Resistance
caused by carboxylesterase can be due to
different non-specific isozymes that hydrolyze
or sequester insecticides (Montella et al., 2012;
Teese et al, 2013). Also, the variation in
resistance levels is usually associated with
variation in the number of copies of each gene
as carboxylesterase isozyme patterns change
with the strain (Devonshire, 1989). Also, it has
been proposed that resistance may result from a
mutation in a carboxyl esterase that
simultaneously reduces activity and confers an
OPs hydrolase activity (Newcomb et al., 1997).
The results of the carboxylesterase activity
measurement in eight Iranian strains of WFT
showed that the highest activity was related to
two strains from Yazd province (M and B)
(activity ratio for a- NA was 1.69 and 1.66 fold
and for B- NA was 7.31 and 4.42 fold). Also,
glutathione  S-transferase  activity  was
significantly different only in KMN (1.33
times) compared to susceptible = strain.
Therefore, higher activity of carboxylesterase
and glutathione S-transferase in these strains
indicates the involvement of the enzyme-
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dependent detoxification system in resistance to
dichlorvos. The correlation between changes of
carboxylesterase and dichlorvos resistance in
Culex pipiens with three esters (Ester8, Ester9
and EsterB10) has been documented (Liu et al.,
2011). Maymo et al. (2002) found that in WFT
strains selected with methiocarb and acrinatrin
and some field strains, increased activity of
carboxylesterase and glutathione S- transferase
caused resistance compared to susceptible
strain. Ferrari et al. (1993) demonstrated 10-
fold carboxylesterase activity in a dimethoate
and formetanate-resistant strain of Scirlothrips
citri compared to the susceptible strain
(resistance  ratio 35 and 3.9 fold,
respectively). They reported that the reason for
resistance to these insecticides is the increased
activity of carboxylesterase. High levels of
carboxylesterase and glutathione S-transferase
activity in insecticide-resistant thrips have been
reported in various studies (Immaraju et al.,
1990; Zhao et al., 1995; Jensen 2000a; Saha et
al., 2012). On the contrary, in a strain selected
with diazinon, carboxylesterase activity was
somewhat lower than the reference strain. In
addition, staining for carboxylesterase in
electrophoresis showed more bands of
carboxylesterase in the reference strain. In
addition, no difference was found between GST
activities. ~ These  results showed that
carboxylesterase and GST were not involved in
resistance (Zhao et al., 1994).

Also, differences of 14.3 fold in activity ratio
were observed for AChE between the YZM and
IHN strains. High enzyme activity probably
indicates less susceptibility of the AChE to
inhibition by OPs that occurred in the resistant
population. Also, over-production of AChE could
cause the high AChE activity, which in turn leads
to decreasing neurotransmitter level as a relevant
efect of OPs (Bourguet et al., 1997).

Nevertheless, insensitively of AChE in
studied strains should be specified to provide a
better insight into the effect of this enzyme in the
resistance to dichlorvos. Study on the selected
strain with diazinon also revealed that although
the level of insensitivity of this enzyme was
similar in both susceptible and resistant strains, it
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caused resistance to diazinon (Zhao et al., 1994).
Thus, the role of this mechanism in insecticide
resistance of WFT is not well understood. In
another experiment, an increase in the
insensitivity of AChE to OPs and carbamates has
been suggested as a reason for resistance in S.
citri (Ferrari et al., 1993). In three strains KMN,
YZB and YZM, the activity of carboxylesterase,
GST and AChE were increased. The reason for
high resistance of these three strains to
dichlorvos may be due to overlapping activity of
these enzymes (Gong et al., 2013). Results of
our study suggest that enhanced detoxification
by carboxylesterase play a significant role in
resistance to dichlorvos. Due to the high
potential of western flower thrips to develop
insecticide resistance, the most important aspect
of its chemical control would be precaution in
the implementation of any factor used to control
this pest. If farmers would have a high awareness
of pest resistance to insecticides, they would be
more careful about the use of certain chemical
compounds.  For  insecticide  resistance
management towards dichlorvos; actions should
be considered on the base of the regional history
of chemical control and schedule rotational use
of insecticides in each province.
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