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Abstract: The Colorado potato beetle, Leptinotarsa decemlineata Say (Col.:
Chrysomelidae) is an important pest of potato worldwide and study of its
glucosidases is an important step to develop appropriate pest control strategies.
In this study, some biochemical aspects of B-glucosidase in the Colorado potato
beetle were determined. The results showed that B-glucosidase activity in the
midgut of adults was 6.68 Umg"'. Maximum activity of midgut B-glucosidase
occurred at pH 4 to pH 5.5; however, the enzyme is active at pH 3 to pH 7 more
than 50% of its relative activity. The enzyme was stable at pH 3 to pH 8 for 2
and 8 hours incubation time. According to the results, optimal temperature for
the enzyme activity was 50 °C and its stability significantly was reduced at 50 °C
during 1 to 8 days incubation time. The enzyme activity decreased with the
addition of different concentrations of MgCl,, urea, Tris and CaCl,. Enzyme

activity was highly decreased at low concentrations of SDS (1 mM).
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Introduction

The Colorado potato beetle, Leptinotarsa
decemlineata Say. (Col.: Chrysomelidae), is one
of the most serious pests of potato in eastern
North America and Europe (Hare, 1990). This
pest was also reported from Iran in 1984 and is
distributed in many potato production provinces
(Nouri  Ghanbalani, 2002). Un-controlled
populations can completely defoliate potato
plants and cause a total yield loss (Hare, 1980,
1990). Synthetic chemical insecticides have been
widely used for controlling of the pest but
despite their broad applications, the control level
was not sufficient and the resistance of many L.
decemlineata populations has been reported
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frequently (Forgash, 1981; Gauthier et al., 1981;
Harris et al., 1981; Hare, 1990) for this reason,
alternative control methods are needed for
sustainable management programs of this pest.
Host plant resistance to insect pests is one of the
most promising ways to reduce pest populations
and dependency to pesticides (Pedigo, 1999).
Plants produce secondary metabolites such as
glucosides that are converted into toxic
aglycones in insects’ midgut by the activity of
digestive enzymes and are thereby defended
against herbivore attacks (Wei et al., 2007). This
property of plants can be manipulated by genetic
engineering to produce resistant plants against
herbivorous insects (Mattiacci et al. 1995). B-
Glucosidase (EC. 3.2.1.21) is an enzyme
catalyzing the hydrolysis of glycosidic linkages
from the non-reducing terminal of di- and oligo-
B-saccharides obtained from the initial digestion
of hemicelluloses and cellulose (Terra and
Ferreira, 1994). It has been reported that insect
B-glucosidases have a key role in insect-plant
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interactions (Terra and Ferreira, 1994).
Therefore, study of biochemical characterization
of these enzymes and their role in digestive
system can be important in the diagnosis of
plants resistance to pests. B-Glucosidases are
characterized in many insects like Tenebrio
molitor L. (Col.: Tenebrionidae) (Ferreira et al.,
2001), Bombyx mori L. (Lep.: Bombycidae)
(Byeon et al., 2005), Rhynchophorus palmarum
L. (Col.: Curculionidae) (Yapi et al., 2009),
Glyphodes pyloalis Walker (Lep.: Pyralidae)
(Ghadamyari et al., 2010), Apis mellifera
linnaeus (Pontoh and Low, 2002), Neotermes
koshunensis ~ Shiraki (Iso.: Kalotermitidae)
(Tokuda et al. 2002). Since there is no
information available on the activity of digestive
B-glucosidase for the Colorado potato beetle, the
purpose of the current study is to characterize
some biochemical properties of the midgut-
extracted B-glucosidases of L. decemlineata.

Materials and Methods

Insect collecting

Colorado potato beetle adults were collected
from potato fields (Hamedan province) ( 2010 to
2011) and maintained on potato leaves under
laboratory controlled conditions at 26 = 1 °C,
70-75% R. H. and a photoperiod of 14L: 10D h.

Sample preparation

The adults of L. decemlineata were
immobilized on ice and dissected under a
stereomicroscope. Their midguts were moved
into ice-cold double-distilled water. Samples
were homogenized in a pre-cooled hand-held
glass homogenizer and resulting homogenates
were transferred to new 1.5 ml centrifuge. After
that they were centrifuged at 15000g for 10 min
at 4 °C. The supernatants were pooled and
stored at —20 °C for subsequent analyses.

Enzyme assay

B-Glucosidase activity was determined by
measuring the amount of released p-nitrophenol
from  p-nitrophenyl- B-D-glucopyranoside
(pPNPG) as the substrate by the method of Low et
al. (1986) with slight modifications. The assay
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mixture included 300 pl of 40 mM citrate-
phosphate buffer (pH 5), 10 pl enzyme and 20 pl
of 15 mM pNPG. The reaction mixture was
incubated for 15 min at 50°C. Enzyme activity
was stopped by addition of 700 pl NaOH (2 M).
The absorbance was measured at 405 nm after
10 minutes (Bandani et al., 2010).

Effect of pH and temperature on the enzyme
activity
Optimal pH for enzyme activity was measured
using citrate- phosphate buffer at pH 2 to 8 (with
0.5 intervals). Enzyme sample was incubated in
citrate-phosphate buffer with different pHs for 2
and 8 h. Residual activity of the treated enzyme
sample was measured according to the following
section “Enzyme assay” (Bandani et al., 2010).
To determine the optimum temperature for
the enzyme activity, the reaction mixture was
incubated at different temperatures ranging
from 5 °C to 70 °C (with 5 °C intervals) for 35
min followed by section “Enzyme assay”.
Enzyme stability at different temperatures was
measured at 5 °C, 26 °C and 50 °C for 1 to 8
days. Subsequently, residual activity of the
enzyme was determined (Bandani et al., 2010).

Influence of cations and inhibitors on B -
glucosidase activity

To detenmine the effect of different ions on the
enzyme activity, different concentrations of
chloride salts such as Na" (5, 10, 20 and 40 mM),
K" (5, 10, 20 and 40 mM), Ca*" (5, 10, 20 and 40
mM), Mg*" (5, 10, 20 and 40 mM), sodium
dodecylsulfate (SDS; 1 mM), Tris (10 and 20
mM) and Urea (0.4 and 0.8 M) were added to the
assay mixture, then relative activity was measured
after 35 min (Bandani et al., 2010).

Protein determination

Absorbance degree of protein content was
measured at 595 nm according to Bradford (1976)
using bovine serum albumin as the standard.

Electrophoresis and zymogram analyses of
B-glucosidase

Electrophoretic analysis was performed using
native-PAGE on 7.5% and 3.5% (w/v)
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resolving and stacking polyacrylamide gels,
respectively (Laemmli, 1970). Following SDS-
PAGE, the gel was washed in 40 mM citrate-
phosphate buffer at pH 5 (optimal pH for the
enzyme activity) for 20 min at room
temperature. Then, the gel was incubated in the
buffer including 8 mM fluorogenic substrate 4-
methylumbelliferyl-B- D-glucopyranoside at 40
°C for 30 min. Finally, B glucosidase activity
was detected by fluorescence under UV
illumination.

Statistical analysis

Data were compared by one-way analysis of
variance (ANOVA) followed by Tukey's
studentized test using the SAS program (SAS
Institute, 2004).

Results

B-Glucosidase activity
The specific activity of B-glucosidase from the
midgut was 6.68 Umg™ proteins.

Effect of pH and temperature on f
glucosidase activity

The effect of pH on the enzyme activity
toward pNBG was measured. The enzyme was
active from pH 3 to 7 at least 50% of relative
activity. Maximum enzyme activity was
determined at pH range of 4 to 5.5. B-
Glucosidase activity in the midgut was
increased steadily from pH 2 to 4 and then
decreased with increasing pH values from 6 to
8 (Fig. 1).

Enzyme stability in different pHs for 2 and 8h
has been shown in Fig. 2. B-glucosidase from the
midgut of L. decemlineata was stable at pH 3 to
pH 8. The enzyme is not stable at pH 2.

B-glucosidase was active over a broad
temperature range. As shown in Fig. 3, the
optimal temperature for B-glucosidase activity
in L. decemlineata midgut was 50 °C. The
enzyme activity was increased steadily with
increasing temperature from 10 °C to 50 °C.
At temperatures above 50 °C, the enzyme
activity was gradually decreased until it was
nill at 70 °C.
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Figure 1 Effect of pH on activity of B-glucosidases
extracted from midgut of Leptinotarsa decemlineata.
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Figure 2 Effect of pH on the stability of B-
glucosidase activity from midgut of Leptinotarsa
decemlineata after 2 and 8 hours.
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Figure 3 Effect of temperature on P-glucosidases
activity extracted from midgut of Leptinotarsa
decemlineata (incubated for 15 min).
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B-glucosidase retained 80% of its
original activity after 8 days incubation at 5
°C and 26 °C. The enzyme was unstable at
50 °C after 1 day and lost about 80% of its
activity. Enzyme activity was about
completely lost at 50 °C after 2 days
incubation time (Fig. 4).

Relative activity (%)
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Figure 4 Effect of temperature on stability of
midgut B-glucosidase activity of Leptinotarsa
decemlineata (for 8 days).

Effect of cations and
glucosidase activity
p—glucosidase activity was declined in
accordance with increased concentration of
MgCl,, CaCl, and urea. In addition, the
results showed that enzyme activity
decreased strongly at low concentration of
SDS (1 mM). On the other hand, KCI1 (20
and 40 mM) positively influenced the
activity of  B-glucosidase. Different
concentrations of NaCl did not have any
effects on B-glucosidase activity. In addition,
Tris (20 mM) inhibited the enzyme activity
up to 24% (Table 1).

inhibitors on f-

Zymogram analyses

Further characterization of hydrolytic
activity of p-glucosidase of the midgut
extract from L. decemlineata was performed
by incubation of electrophoresed gels
containing non-heated enzyme sample with
MUaGlc as the substrate. As shown in Fig.
5, three distinct bands related to the enzyme
activity were observed.
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Table 1 Relative activity of midgut B-glucosidase
from Leptinotarsa decemlineata at different
concentrations of the test compounds.

Compounds C"('l':lfr'l'(flr;:;"“ Relative activity (%)
Control - 100
NaCl 5 97.24 + 0.04
10 99.63 + 0.04
20 93.81 + 0.006
40 99.80  0.05
KCl 5 89.55 = 0.08
10 91.97 % 0.02
20 100.67 + 0.05
40 100.37 £0.12
CaCl, 5 87.50 £ 0.05
10 69.41 = 0.02
20 52.54+0.13
40 51.28 + 0.04
MgCl, 5 81.92 + 0.06
10 72.86 + 0.008
20 59.47 + 0.04
40 40.56 +0.01
Urea 400 89.62+0.11
800 67.48+0.15
Tris 10 94.75 £ 0.10
20 76.05 + 0.05
SDS 1 5.00 + 0.02

Figurer 5 Zymograms of B-glucosidase in the midgut
of Leptinotarsa decemlineata. Arrows show three
distinct bands related to the enzyme activity.
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Discussion

B-glucosidases are widely present in plants,
fungi, bacteria and other animals especially
major orders of insects (Esen, 1993). These
enzymes hydrolyze cellobiose and other cello-
oligosaccharides to glucose that can be
absorbed by midgut epithelial cells. Because
B-glycans are major dietary components of
many insect species, thus B -glucosidase has
key role in carbohydrate digestion within
insect digestive system (Terra and Ferreira,
1994). Yapi et al. (2009) expressed that f-
glucosidases in R. palmarum hydrolyze
cellobiose, cellodextrins, laminaribiose,
sophorose, gentiobiose and p-nitrophenyl- -
D-glucopyranoside. Moreover, Ferreira et al.
(1998) reported that Abracris flavolineata
Degeer (Orth.: Acrididae), T. molitor and
Scaptotrigona bipunctata Lepeletier (Hym.:
Apidae) displayed higher [-glycosidase
specific activities. In contrast, predaceous
insects such as Pheropsophus aequinoctialis L.
(Col.: Carabidae) and Pyrearinus
termitilluminans Costa (Col.: Elateridae) have
low B-glucosidase activity. Midgut pB-
glucosidases of L. decemlineata have optimal
activity in pH range between 4-5.5, which is
consistent with other observations; e.g. Yapi et
al.(2009) showed that maximal B-glucosidase
activity of the palm weevil R. palmarum was
at pH 5, while the optimum pH and
thermostability of N. koshunensis -
glucosidase were 5 and 45 °C (Ni et al. 1985).
In addition, midgut B—glucosidase of Rhodnius
prolixus Stal had optimal pH value at 4.5
(Terra et al. 1988). A digestive enzyme is
affected by pH of gut contents (Terra and
Ferreira, 1994) and it seems that there is a
correlation between enzyme pH and luminal
pH of insect’s gut (Applebaum, 1985). Some
beetle families such as Chrysomelidae have
acidic pH value across their midgut (Terra and
Ferreira, 1994) which can explain the acidic
activity of B-glucosidase in the midgut of L.
decemlineata. The reason for broader pH range
of B-glucosidases activity could be due to the
presence of three isozymes in the midgut of L.
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decemlineata. In many cases, the pH-
dependency of enzyme activity is reversible,
and the enzyme incubated in weakly acid or
alkaline condition of the titration curve regains
its maximum activity when shifted to the
optimum pH. So, a pH stability curve is
usually broader than the reversible pH
optimum curve (Bisswanger, 2004). This wide
pH range stability of B-glucosidases from the
midgut of L. decemlineata is consistent with
Pontoh and Low (2002), who reported that f3-
glucosidases from the ventriculus and honey
sac in A. mellifera were active in pH 3.5 to 9.5
and 4.5 to 9.0, respectively. Our results also
showed that B-glucosidase of the Colorado
potato beetle has an optimal activity at 50°C
and its activity increased steadily from 15-50
°C but it is unstable at 50 °C (Fig. 5). a-
glucosidase and B-glucosidase of most insects
have optimal temperature ranging from 20 to
50 °C (Huber and Mathison, 1976; Takenaka
and Echigo, 1978; Ghadamyari et al., 2010).
The optimal temperature of [-glucosidase
activity of R. palmarum was at 55 °C (Yapi et
al., 2009). Digestive enzymes are protein
structures that catalyze biological reactions
and each enzyme has a temperature range for
its optimal activity. Temperatures above this
range disrupt three-dimensional structure of
enzyme that may be irreversible (Price and
Stevens, 1989). It could be concluded that the
instability of B-glucosidase of L. decemlineata
at 50 °C is a consequence of its three-
dimensional structure change.

Based on obtained results, SDS, MgCl,,
CaCl,, urea and Tris decreases P-glucosidase
activity significantly. Zeng and Cohen (2001)
reported that Cu®' had the highest effect (118%)
and Mg®" the least effect (96%) on a- and P-
glucosidase of Lygus hesperus Fabricius (Hem.:
Miridae). Similarly, Yapi et al. (2009) showed
that CuCl,, ZnCl,, FeCl; decreased J-
glucosidase activity in digestive fluid of the
palm weevil larvae, R. palmarum, whereas
BaCl,, MgCl,, MnCl,, SrCl, and CaCl, had no
effect on the enzyme activity. Ghadamyari et al.
(2010) demonstrated that the CaCl, (40 mM)
decreased B-glucosidase activity and increased
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a-glucosidase activity in pyralid G. pyloalis.
They also illustrated that urea (4 mM) and SDS
(8 mM) significantly decreased digestive [-
glucosidase activity. Mahboobi et al. (2011)
showed that activity levels of midgut f-
glucosidase in Aelia acuminata L. (Hem.:
Pentatomidae) was increased with increasing
concentrations of NaCl, MgCl,, CaCl,, KCl,
whereas, its activity was decreased in the
presence of sodium dodecylsulfate, urea and
Tris. Biochemical characterization revealed that
L. decemlineata midguts have three p-
glucosidase isoforms. Previous studies with
other insect midgut P—glucosidase showed at
least three, four or even five distinct bands
(Azevedo et al., 2003).

Plants produce a wide variety of secondary
metabolites used as defensive agents against
herbivores. These include cyanogenic alkaloids,
triterpenoid, glycosides, phenols, flavonoids
and non-protein amino acids. Among those
compounds, it seems that glycosides have
important role in plant resistance to insects
(Hsiao, 1988). Most plant glycosides are [-
linked o-glycosyl compounds that have
hydrophobic aglycone therefore; they are
hydrolyzed by insect glycosylceramidases and
B—glucosidases that have a glycosylceramidase-
like activity (Terra and Ferreira, 1994).
Aglycons released of B-glucosidase activities
are usually more toxic than the glycosides
themselves (Yu, 1989).

Several plants have been identified to
produce glycosides which are feeding deterrents
(Klun et al., 1967; Elliger et al. 1981) or have
antifeedant activity for phytophagous insects
(Montgomery and Arn, 1974). Recognizing
these compounds in plants and application of
genetic engineering techniques to transfer genes
producing toxic compounds to target plants can
be appropriate strategy for developing host
plant resistant to insects.
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