

Insecticidal and repellent activities of Artemisia khorassanica, Rosmarinus officinalis and Mentha longifolia essential oils on Tribolium confusum

Mahdieh Saeidi and Saeid Moharramipour*

Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box 14115-336, Tehran, Iran.

Abstract: The essential oils of aerial parts of three medicinal plants Artemisia khorassanica Podl., Rosmarinus officinalis L. and Mentha longifolia L. were isolated by hydrodistillation and investigated for their toxicity and repellency against Tribolium confusum Jacquelin du Val. at 27 \pm 1 °C and 60 \pm 5% RH in darkness. The mortality of the adults increased with concentration from 185 to 1111 µl/l air and with exposure time from 9 to 24 h. A concentration of 185 µl/l air and exposure time of 24 h was sufficient to obtain nearly 100% kill of the adults in all of the three essential oils tested. At the highest concentration (1111 μl/l air) R. officinalis oil caused 15% mortality for an exposure time of 6-h. whilst, the oil of A. khorassanica resulted in 1% mortality at the same exposure time. The oil of A. khorassanica at 1111 µl/l air caused 81% mortality for 12-h exposure time. No significant differences were observed between the lethal time (LT₅₀) values at essential oil concentrations of 741 and 1111 µl/l air. For 24-h exposure time, the LC₅₀ values of A. khorassanica, R. officinalis and M. longifolia essential oils were estimated to be 22.45, 22.14 and 39.96 μl/l air respectively. Based on LC50 values, adults of T. confusum showed similar susceptibility to the A. khorassanica and R. officinalis oils, but M. longifolia oil proved to be less toxic. In contrast to their low fumigant properties, the essential oil of M. longifolia had significantly higher repellency to T. confusum adults than did the other two.

Keywords: Fumigant toxicity; Repellent; *Artemisia khorassanica; Rosmarinus officinalis; Mentha longifolia; Tribolium confusum*; essential oil

Introduction

Control of insect pest infestation in storage may cause special problems on stored products. In many storage systems, methyl bromide and phosphine are the most economical fumigants for management of stored-grain insect pests. EPA (2001) has proposed elimination of the production of methyl bromide by 2005 because

Handling Editor: Dr. Khalil Talebi Jahromi

*Corresponding author, e-mail: moharami@modares.ac.ir Received: 19 June 2012; Accepted: 13 January 2013 of its ozone depletion potential. Additionally, some stored-product insects are found to have developed resistance to methyl bromide and phosphine (Subramanyam and Hagstrum, 1995; Champ and Dyte, 1977). These problems due to conventional insecticides have demonstrated the need for the development of alternative products such as natural extracts derived from plants. Many types of spices and herbs are known to possess insecticidal activities (Tripathi et al., 1999) especially in the form of essential oils (Shaaya et al., 1991). They do not leave residues harmful to the environment and have lower toxicity to mammals (Duke, 1985). Among the medicinal plants, Artemisia vulgaris

L., Artemisia aucheri Boiss., Artemisia scoparia Waldst et Kit and Artemisia sieberi Besser have been reported to be repellent and toxic to Tribolium castaneum (Herbst) (Wang et al., 2006; Shakarami et al., 2003; Negahban et al., 2006, 2007). The essential oil of R. officinalis (Rosemary) showed insecticidal activity against Sitophilus oryzae L. and T. castaneum (Shaaya et al., 1997; Lee et al., 2002). Some studies have assessed the fumigant toxicity of Mentha piperita L. and Mentha arvensis L. against T. castaneum (Aggarwal et al., 2001; Lee et al., 2002).

The present study was conducted to investigate the potential effects of essential oils extracted from the aerial parts of *A. khorassanica, R. officinalis* and *M. longifolia* on the confused flour beetle, *T. confusum.* Although a number of researchers have shown the effectiveness of essential oils and their constituents against adults of various stored grain insects, there are no reports on toxicity of *A. khorassanica* and *M. longifolia* on *T. confusum*

Materials and Methods

Plant materials

Aerial parts of A. khorassanica, R. officinalis and M. longifolia were collected at full flowering stage from Pole Chehel Dokhtar (Khorassan province), Karaj (Tehran province) and Yoush and Baladeh (Mazandaran province), from August to November 2007 and authenticated by Mozaffarian, Herbarium Department, Research Institute of Forests and Rangelands of Iran.

Plant parts were let dry naturally on laboratory benches at room temperature (23-27 $^{\circ}$ C) for 7 days until they were crisp. The dried materials were stored at -24 $^{\circ}$ C until needed and then hydrodistilled to extract their essential oils.

Extraction of essential oils

Plant materials were milled into fine powder using a milling machine. Fifty grams of the plant samples to which 600 ml distilled water was added, were subjected to hydrodistillation

for 4 h using a modified Clevenger-type apparatus. The essential oils were dried over anhydrous sodium sulfate and were stored in glass tubes at -4 °C in refrigerator, until they were used. The oils yielded by A. *khorassanica*, *R. officinalis* and *M. longifolia* were 0.322, 0.565 and 0.533% w/w respectively on dry weight basis.

Insect rearing

Tribolium confusum was reared on wheat flour mixed with yeast (10:1 w/w) that was covered by a fine mesh cloth for ventilation. The cultures were maintained in the dark in a growth chamber set at 27 ± 1 °C and $65 \pm 5\%$ RH. One to seven days old adults were used for fumigation toxicity tests and repellency bioassays. All experimental procedures were carried out at the same environmental condition as those of the culture.

Fumigant toxicity tests

To determine the fumigant toxicity of essential oils, filter papers (2 cm diameter) were impregnated with oil at doses calculated to give equivalent fumigant concentrations ranging from 185 to 1111 µl /l air for all essential oils tested. Afterwards, the impregnated filter paper was attached to the under surface of the screw cap of a glass vial (volume 27 ml). The caps were screwed tightly on to the vials containing 10 (1 to 7 days old) adult insects each. Each concentration and control was replicated five times. Adults were exposed to each essential oil at concentration of 185.2, 370.4, 740.7 and 1111.1 µl /l air for 3, 6, 9, 12 and 24 h. Mortality for each concentration and exposure time was checked independently. Insects were presumed dead if they remained immobile and no leg or antennal movements were observed. Analysis of variance (ANOVA) was used to compare in each experiment. treatments Differences the between means established by Tukey's test at 5% level (SAS Institute, 1997).

Another experiment was designed to determine median effective time to kill 50% of adults (LT₅₀ values) at 740.7 and 1111.1 μ l/l air

of the respective oils. The mortality was assessed by direct observation of the insects every hour for up to end point of mortality. Time-mortality data for each experiment were analyzed by Mathematica software 6.0 (Throne *et al.*, 1995) with time as the explanatory variable to derive estimated hours for 50% adult mortality.

After initial dose setting experiments another set of bioassay tests was designed to assess 50% lethal concentration (LC₅₀) as described by Negahban et al. (2006). Tribolium *confusum* were exposed to the essential oil of A. khorassanica at 10.71, 17.85, 25, 32.14 and 39.28 µl/l air for 24 h, without solvent. The concentrations of 7.14, 14.28, 21.42, 28.5, 35.71 ul/l air were used for R. officinalis, followed by 9.25, 18.51, 27.77, 37.03, 46.29, 55.55, 64.81 ul/l air for M. longifolia. Control insects were kept without any essential oil. Each test was replicated five times. After 24-h exposure period, the number of dead and live insects in each bottle was counted. Probit analysis (Finney, 1971) was used to estimate LC₅₀ values with their confidence limits by SAS Institute, 1997). Significant 6.12 (SAS differences between LC_{50} values by estimation of confidence determined intervals of the relative median potency using SPSS version 18.

Repellency bioassay

Repellency was assessed as described by Negahban et al. (2006). The repellency tests were consisted of two clear plastic chambers (65 ml volume) joined to either side of a central main chamber with the same size by a small tubing (2 cm long and 3 mm in diameter). Test solutions were prepared by dissolving 50, 75 and 100 μl of A. khorassanica, R. officinalis and M. longifolia essential oils in 1 ml acetone. Each solution was applied on 30 seeds of wheat. In the control, the food was treated with acetone only. The treated and control seeds were air-dried under a fan for 30 min to evaporate the solvent completely, and placed in the center of treated and control chambers respectively. Four replications were used for each concentration. Fifty nonsexed adults (1-7 days old) of flour beetles were introduced into the center of each main chamber. Central chamber was covered by plastic screen but the treated and control chambers were covered by lids and the whole set up was left in darkness. After 4 h, the number of beetles at each chamber was counted and the percentage repellency (PR) values were computed using the formula of Liu *et al.* (2006):

$$\%PR = \left(\frac{C - E}{T}\right) \times 100$$

where C is the number of insects in control, E is the number of insects in oil treated chamber and T is the number of total released insects. Analysis of variance (ANOVA) was used to determine the effect of essential oil concentrations on repellency. Arcsine square-root transformation was performed on percentage repellency. Following a significant ANOVA, differences between the means were determined by Tukey's test at 5% level.

Results

Fumigant toxicity

Bioassay tests were conducted to determine if the insecticidal activity of A. khorassanica, R. officinalis and M. longifolia oils against T. confusum adults was attributable to their fumigant action. No dead insects were observed in controls. In all cases, a significant difference in mortality of the adults was observed as oil concentration and exposure time was increased. The mortality increased with increasing concentration from 185.2 to 1111.1 ul/l air and exposure time from 3 to 24 h. In all concentrations. A. khorassanica and officinalis oils resulted in more than 50% mortality after 12 h exposure time, which indicated that lethal time for 50% adult mortality could be a range between 9 and 12 h. At the highest concentration (1111.1 μ l/l air), R. officinalis oil resulted in 15% adult mortality for 6-h exposure time, whilst the oil of A. khorassanica caused 1% mortality at the same exposure time. The oil of A. khorassanica at 1111 µl/l air caused 81% mortality for 12-h exposure time. Generally, bioassay tests indicated that *A. khorassanica* oil had higher fumigant toxicity than the other two essential oils. All tested essential oils at all concentrations revealed approximately 100% of adult mortality for 24-h exposure time (Table 1).

Increasing the essential oil concentration resulted in slight decrease in the time needed to kill 50% adult. Lethal time₅₀ (LT₅₀) value of A. *khorassanica* decreased from 10.03 h [95%]

confidence limits (CL) = 9.19-10.87] at concentration of 741 μ l/l air to 9.63 h (95% CL= 8.78-10.47) at concentration of 1111 μ l/lair. Increasing the concentrations of the oil, the LT₅₀ value of *R. officinalis* decreased slightly from 10.77 h (95% CL = 9.70-11.84) to 9.98 h (95% CL = 8.83-11.13) but it was not significant, since 95% confidence limits overlapped. It could be concluded that LT₅₀ values in doses tested do not seem to be dose-dependent (Table 2).

Table 1 Percent mortality of *Tribolium confusum* adults exposed to different concentrations of essential oil from *Artemisia khorassanica*, *Rosmarinus officinalis* and *Mentha longifolia* for various exposure periods.

Concentration	Exposure	% mortality (Mean ± SE) ¹			
(µl/l air)	time (h)	A. khorassanica	R. officinalis	M. longifolia	
185.2	3	0g	0f	0f	
	6	0g(A)	$2.00 \pm 1.22 f(A)$	0f(A)	
	9	$13.00 \pm 1.22 f(A)$	$11.00 \pm 2.92e(A)$	$2.00 \pm 1.22 f(B)$	
	12	$59.00 \pm 1.00 d(A)$	53.00 ± 4.64 bc(A)	$19.00 \pm 2.45 de(B)$	
	24	98.00 ± 2.00 a(A)	$97.00 \pm 2.00a(A)$	$97.00 \pm 2.00a$	
370.4	3	0g	0f	0f	
	6	0g(A)	$4.00 \pm 2.45 f(A)$	0f(A)	
	9	17.00 ± 1.22 ef(A)	$20.00 \pm 1.58 de(A)$	$15.00 \pm 2.24e(A)$	
	12	66.00 ± 4.00 cd(A)	68.00 ± 1.22 bc(A)	26.00 ± 1.87 bcd(B)	
	24	$99.00 \pm 1.00a(A)$	100a(A)	100a	
740.7	3	0g	0f	0f	
	6	0g(B)	$10.00 \pm 2.74e(A)$	0f(B)	
	9	21.00 ± 4.30 ef(A)	$28.00 \pm 4.06 d(A)$	$18.00 \pm 2.00e(A)$	
	12	72.00 ± 4.64 bc(A)	52.00 ± 3.39 b(B)	$30.00 \pm 2.24bcd(C)$	
	24	100a	100a	100a	
1111.1	3	0g	0f	0f	
	6	1.00 ± 1.00 g(B)	$15.00 \pm 2.24 de(A)$	0f(B)	
	9	$24.00 \pm 1.87e(B)$	44.00 ± 5.79 c(A)	25.00 ± 2.74 cd(B)	
	12	81.00 ± 1.87 b(A)	69.00 ± 2.45 b(B)	$36.00 \pm 1.00b(C)$	
	24	100a	100a	100a	

^{1.} Means followed by the same lower-case letters in a column and upper-case letters in a row are not significantly different using Tukey's test at 5% level.

Table 2 Lethal time₅₀ (LT₅₀) values of the two highest concentrations of oils against *Tribolium confusum* adults.

Plant species	Concentration (µl/l air)	$LT_{50}^{1}(h)$	Slope ± SE	Degree of freedom	Chi-square (χ²)
A. khorassanica	741	10.03 (9.19 - 10.87)	0.03 ± 0.31	9	12.59
	1111	9.63 (8.78 - 10.47)	0.03 ± 0.31	10	11.27
R. officinalis	741	10.77 (9.70 - 11.84)	0.02 ± 0.24	10	14.67
	1111	9.98 (8.83 - 11.13)	0.02 ± 0.23	11	16.45
M. longifolia	741	12.01 (11.15 - 12.87)	0.03 ± 0.30	9	11.59
	1111	11.23 (10.38 - 12.08)	0.03 ± 0.30	10	11.93

^{1. 95%} lower and upper confidence limits are shown in parenthesis.

The results of probit analysis showed that T. confusum adults were comparatively more susceptible to A. khorassanica ($LC_{50} = 22.45 \mu l/l$ air) and R. officinalis oils ($LC_{50} = 22.14 \mu l/l$ air) than to M. longifolia oil ($LC_{50} = 39.96 \mu l/l$ air) (Table 3). Moreover, as shown in table 4, relative median potency of A. khorassanica and R. officinalis oils versus M. longifolia oil was significant, confirming the more tolerance of the T. confusum to M. longifolia than the other two oils.

Repellency

In the present study, the repellency of *A. khorassanica*, *M. longifolia* and *R. officinalis* were evaluated against *T. confusum* adults.

The essential oil of *M. longifolia* strongly repelled the flour beetle in all concentration except 50 μ l/l air acetone. Therefore, repellency of *M. longifolia* was significantly higher than *A. khorassanica* and *R. officinalis* oils to the *T. confusum* adults with overall repellency (*A. khorassanica*: F = 22.56, df = 2 and P < 0.001; *R. officinalis*: F = 22.10, df = 2 and P < 0.001; *M. longifolia*: F = 54.59, df = 2 and P < 0.001). In general, the repellency increased with increasing concentration of essential oils in all cases (Table 5).

Table 3 The LC₅₀ values of *Artemisia khorassanica*, *Rosmarinus officinalis* and *Mentha longifolia* oils against *Tribolium confusum* adults resulting from 24-h laboratory fumigations.

Plant species	LC ₅₀ ¹ (µl/l air)	Slope ± SE	Degree of freedom	Chi-square (χ²)
A. khorassanica	22.45 (19.10 - 26.02)	0.47 ± 2.77	3	0.446
R. officinalis	22.14 (18.61 - 26.71)	0.43 ± 2.43	3	0.561
M. longifolia	39.69 (32.97 - 50.19)	0.31 ± 1.77	5	0.404

^{1. 95%} lower and upper confidence limits are shown in parenthesis

Table 4 Relative potency of the LC₅₀ values of *Artemisia khorassanica*, *Rosmarinus officinalis* and *Mentha longifolia* oils tested on *Tribolium confusum* adults

Plant A	Plant B	Relative potency	95% confidence limits
		$(LC_{50} A/ LC_{50}B)$	
A. khorassanica	R. officinalis	1.014ns	0.767 - 1.328
A. khorassanica	M. longifolia	0.566*	0.412 - 0.767
R. officinalis	M. longifolia	0.558*	0.400 - 0.776

^{*:} significant ns: non-significant

Table 5 Percent repellency (mean \pm SE) of the essential oils from *Artemisia khorassanica*, *Rosmarinus officinalis* and *Mentha longfolia* on *Tribolium confusum* adults using treated filter paper test.

DI .	Concentration of essential oil (µl /food)			
Plant species	50	75	100	
A. khorassanica	$2.00 \pm 0.82b$ (B)	$9.00 \pm 1.00b$ (A)	$13.00 \pm 0.58b$ (A)	
R. officinalis	$9.00 \pm 0.58a$ (B)	$11.50 \pm 0.50 b$ (B)	$16.50 \pm 1.26b$ (A)	
M. longifolia	$7.50 \pm 0.50a$ (B)	$29.00 \pm 3.00a$ (A)	$24.00 \pm 0.82a$ (A)	

^{1.} Means followed by the same letter in a column (small letters) and within a row (capital letters) are not significantly different using Tukey's test at p < 0.01.

Discussion

In this study, three essential oils were tested for their fumigant toxicity against adults of T. confusum. The insecticidal activity varied with plant-derived material, concentration exposure time. The chemical constituents of many plant essential oils are mainly composed of monoterpenoids (Coats et al., 1991; Regnault-Roger and Humraoui, 1995; Ahn et al., 1998). Monoterpenoid compounds have considered as potential pest control agents because they are acutely toxic to insects and possess repellent (Watanabe et al., 1993) and antifeedant properties (Hough-Goldstein, 1990). It has been reported that α -thujone (43.4%), β thujone (16.2%) and camphor (12.6%) are the major constituents of A. khorassanica essential oil (Barazandeh, 2003). Therefore the toxic effects of A. khorassanica in part, could be attributed to such monoterpenoid compounds. The monoterpene camphor has been reported to possess insecticidal activity against a number of stored product beetles (Obeng-Ofori et al., 1998). GC and GC/MS analyses of rosemary essential oil have shown that 1,8 cineole (34.5%), α -pinene (15.5%), β -pinene (10.1%), camphor (8.4%) and camphene are the major constituents of the oil. 1,8 cineole has been reported as the most toxic fumigant against Sitophilus oryzae L. in rosemary essential oil (Lee et al., 2004). α-pinene has been reported to be toxic to T. confusum (Ojimelukwe and Alder, The chemical constituents of M. longifolia oil, collected from Tehran province extracted by the same conditions as described in this study were comprised of carvone (61.8%) and limonene (19.4%) as the major constituents (Monfared, 2002). As insecticidal activity of limonene has been demonstrated by Coats et al. (1991), the fumigant toxicity of the M. longifolia oil could in part be attributed to this compound

Based on the LC₅₀ values of *A. khorassanica* and *R. officinalis* oils obtained in this study, it could be estimated that the aforementioned essential oils are more toxic that the essential oil of *Carum copticum* C. B. Clarke (Sahaf *et al.*, 2007).

Our results did not show that fumigant toxicity is necessarily correlated with the high repellency. As Talukder and Howse (1993) reported that in spite of high toxicity of Pithraj *Aphanamixis polystachya* Wall and Parker seeds against *Callosobruchus chinensis* (L.), it exhibited a weak repellency. Findings of this study suggest that there may be different modes of action of the oil on insecticidal activity and repellency.

Our observations showed that fumigant activity of A. khorassanica, R. officinalis and M. longifolia oil was characterized by hyperactivity, convulsion, paralysis and quick knock down followed by death. Needless to say, that there is an urgent need for environmentally safe alternatives to conventional fumigants phosphine and methyl bromide, for the control of stored product insects, . As fumigants play major role in insect pest control in storage, there is a global interest in alternative strategies including development of plant products such as essential oils and their constituents. Therefore, large quantities of plant materials have to be processed in order to obtain essential oil in quantities sufficient for commercial scale tests (Tunc et al., 2000). This should encourage the breeding or selection of plant varieties that produce such compounds in geater amounts. Synthetic production of these compounds may also be an option in order to gain enough material for practical use as plant protection products. It is also necessary to generate toxicity data to examine if oil of these essential oils has nontarget toxicity and whether consumer of the products stored in its presence can detect any residual volatile oils. In conclusion essential oil of A. khorassanica, R. officinalis and M. longifolia provided promising results to be used as a stored product protectant against insect attack.

Increased public concern over the residual toxicity of insecticides applied to stored grain, the occurrence of resistant insect strains and the necessary precautions to work with traditional insecticides calls for new approaches to control stored-product insect pests (Yildirim *et al.*, 2001). Essential oils of medicinal plants such as

Artemisia, Rosemary and mints have extensive use as food supplements, flavors, perfumes, decongestants and antiseptics to chemical. These plants may have potential as alternative fumigants, because they pose fewer risks to human health and less harmful effects on environment.

Acknowledgements

We gratefully acknowledge Dr Valiollah Mozafarian who confirmed the identification of the plant samples. This research was partly supported by a grant from the center of Excellence for the Integrated Pests and Diseases Management of Oil Crops of Iran, which is gratefully appreciated.

Refrences

- Aggarwal, K. K., Tripathi, A. K., Ahmad, A., Prajapati, V., Verma, N. and Kumar, S. 2001. Toxicity of menthol and its derivatives against four storage insects. Insect Science and Its Application, 21 (3): 229-236.
- Ahn, Y., Lee, B., Lee. H. and Kim, H. 1998. Insecticidal and acaricidal activity of caravacrol and β-thujaplicine derived from *Thujopsis dolabrata* var. *hondai* sawdust. Journal of Chemical Ecology, 24: 1-90.
- Barazandeh, M. 2003. Essential oil composition of *Artemisia khorassanica* Podl. from Iran. Journal of Essential Oil Research, 15 (4): 259-260.
- Champ, B. and Dyte, C. 1997. FAO global survey of pesticide susceptibility of stored grain pests. FAO Plant Protection Bulletin, 25: 49-67.
- Coats, J., Karr, L. and Drewes, C. 1991.
 Toxicity and neurotoxic effects of monoterpenoids in insects and earthworms.
 In: Hedin, P. A. (Ed.), Naturally Occurring Pest Bioregulators. American Chemical Society, Washington, DC, pp. 305–316.
- Duke, J. 1985. Handbook of Medicinal Herbs. CRC Press. Boca Raton.
- EPA. 2001. Protection of stratospheric ozone: process for exempting quarantine and pre

- shipment application of methyl bromide. United States Environmental Protection Agency (EPA), 37752-37769.
- Finney, D. J. 1971. Probit Analysis. 3rd edn. Cambridge University press, London.
- Hough-Goldstein, J. A. 1990. Antifeedant effects of common herbs on the Colorado potato beetle (Coleoptera: Chrysomelidae). Environmental Entomology. 19: 234-238.
- Lee, B. H., Annis, P. C., Tumaalii, F. and Choi, W. S. 2004. Fumaigant toxicity of essential oils from the Myrtaceae family and 1,8 cineole against 3 major stored-grain insects. Journal of Stored Products Research, 40: 553-564.
- Lee, B. H., Lee, S. E., Annis, P. C., Pratt, S. J., Park, B. and Tumaalii, F. 2002. Fumigant toxicity of essential oils and monoterpenes against the red flour beetle, *Tribolium castaneum* Herbst. Journal of Asia-Pacific Entomology, 5 (2): 237-240.
- Liu, C. H., Mishra, A. K., Tan, R. X., Tang, C., Yang, H. and Shen, Y. F. 2006. Repellent and insecticidal activities of essential oils from *Artemisia princeps* and *Cinnamomum camphora* and their effect on seed germination of wheat and broad bean. Bioresource Technology, 97: 1969-1973.
- Monfared, A., Nabid, M. R. and Rustaiyan, A. 2002. Composition of a carvone chemotype of *Mentha longifolia* Huds from Iran. Journal of Essential Oils Research, 14: 51-5.
- Negahban, M, Moharramipour, S. and Sefidkon, F. 2006. Chemical composition and insecticidal activity of *Artemisia scoparia* essential oil against three coleopteran stored-product insects. Journal of Asia-Pacific Entomology, 9 (4): 381-388.
- Negahban, M., Moharramipour, S. and Sefidkon, F. 2007. Fumigant toxicity of essential oil from *Artemisia sieberi* Besser against three stored-product insects. Journal of Stored Products Research, 43: 123-128.
- Obeng-Ofori, D., Reichmuth, C. H., Bekele, A. J. and Hassanali, A. 1998. Toxicity and protectant potential of camphor, a major component of essential oil of *Ocimum*

- kilimandscharicum, against four stored product beetles. International Journal of Pest Management, 44 (4): 203-209.
- Ojimelukwe, P. C. and Alder, C. 1999. Potential of zimtaldehyde, 4- allyl- anisol, linalool, terpineol and other phytochemicals for the control of confused flour beetle (*Tribolium confusum* J. D. V) (Coleoptera: Tenebrionidae). Journal of Pesticide Science, 72: 81-86.
- Regnault-Roger, C. and Hamraoui, A. 1995. Fumigant toxic activity and reproductive inhibition induced by monoterpenes on *Acanthoscelides obtectus* (Say) (Coleoptera), a bruchid of kidney bean (*Phaseolus vulgaris* L.). Journal of Stored Products Research, 31: 291-299.
- Sahaf, B. Z., Moharramipour, S. and Meshkatalsadat, M. H. 2007. Chemical constituents and fumigant toxicity of essential oil from *Carum copticum* against two stored product beetles. Insect Science, 14: 213-218.
- SAS Institute. 1997. SAS Users Guide. SAS Institute, USA. 135.
- Shaaya, E., Kostjukovski, M., Eilberg, J. and Sukprakarn, C. 1997. Plant oils as fumigants and contact insecticides for the control of stored-product insects. Journal of Stored Products Research, 33: 7-15.
- Shaaya, E., Ravid, U., Paster, N., Juven, B., Zisman, U. and Pissarev, V. 1991. Fumigant toxicity of essential oil against flour major stored product insects. Journal of Chemical Ecology, 17: 499-504.
- Shakarami, J., Kamali, K., Moharramipour, S. and Meshkatalsadat, M. 2003. Fumigant toxicity and repellency of essential oil of *Artemisia aucheri* on four species of stored pest. Applied Entomology Phytopathology, 71: 61-75.
- Subramanyam, B. and Hagstrum, D. W. 1995. Resistance measurement and management.

- In: Subramanyam B. H. and Hagstrum, D. W. Integrated Management of Insects in Stored Products. Marcel Dekker, New York, pp. 331-397.
- Talukder, F. A. and Howse, P. E. 1993. Deterrent and insecticidal effects of extracts of pithraj, *Aphanamixis polystachya* (Meliaceae) against *Tribolium castaneum* in storage. Journal of Chemical Ecology,19: 2463-2471.
- Throne, J. E., Weaver, D., Chew, V. and Baker, J. 1995. Probit analysis of correlated data: multiple observations over time at one concentration. Journal of Economic Entomology, 88: 1510-1512.
- Tripathi, A. K., Prajapati, V., Gupta, R. and Kumar, S. 1999. Herbal material for the insect-pest management in stored grains under tropical conditions. Journal of Medicinal and Aromatic Plant Science, 21: 408-430.
- Tunc, I., Berger, B. M., Erler, F. and Dağlı, F. 2000. Ovicidal activity of essential oils from five plants against two stored-product insects. Journal of Stored Products Research, 36: 161-168.
- Wang, J., Zhu, F., Zhou, X. M., Niu, C. Y. and Lei, C. L. 2006. Repellent and fumigant activity of essential oil from *Artemisia vulgaris* to *Tribolium castaneum* (Herbst) (Coleoptera: Tenenbrionidae). Journal of Stored Products Research, 42: 339-347.
- Watanabe, K., Shono, Y., Kakimizu, A., Okada, A., Matsuo, N., Satoh, A. and Nishimura H. 1993. New mosquito repellent from *Eucalyptus camaldulensis*. Journal of Agricultural and Food Chemistry, 41: 2164-2166.
- Yildirim, E., Ozbek, H. and Aslan, I. 2001. Pests of Stored Product. Ataturk University Agricultural Faculty Press, Turkey.

خواص حشره کشی و دورکنندگی اسانسهای Rosmarinus officinalis Artemisia khorassanica و Tribolium confusum روی Mentha longifolia

مهدیه سعیدی و سعید محرمی پور*

دانشگاه تربیت مدرس، دانشکده کشاورزی، گروه حشره شناسی کشاورزی، صندوق پستی ۱۴۱۱۵-۱۴۱۱ تهران، ایران * پست الکترونیکی نویسنده مسئول مکاتبه: moharami@modares.ac.ir دریافت: ۳۰ خرداد ۱۳۹۱؛ پذیرش: ۲۴ دی ۱۳۹۱

چكيده: اسانس اندامهاي هوايي سه گياه دارويي درمنه خراساني. Artemisia khorassanica Podl رزماري .Rosmarinus officinalis L و پونه کوهي .Rosmarinus officinalis L به روش تقطير با آب استخراج شد و سمیت تنفسی و دورکننـدگی آن روی شیـشه آرد .Tribolium confusum Jacquelin du Val در دمای 1 ± 17 درجه سلسیوس و رطوبت نسبی 2 ± 18 درصد در تاریکی مورد بررسی قرار گرفت. مرگ و میر حشرات کامل با افزایش غلظت از ۱۸۵ تا ۱۱۱۱ میکرولیتر بر لیتر هـوا و پـس از ۹ تـا ۲۴ ساعت، قرار گرفتن در معرض اسانس افزایش یافت. غلظت ۱۸۵ میکرولیتر بر لیتر هـوا و ۲۴ سـاعت قرارگیری در معرض اسانس تقریبا، موجب مرگ و میر ۱۰۰ درصد از حـشرات کامـل شـد. در بـالاترین غلظت (۱۱۱۱ میکرولیتر بر لیتر هوا) اسانس رزماری پس از ۶ ساعت، موجب مرگ و میـر ۱۵ درصـد از حشرات شد، درحالی که اسانس درمنه خراسانی در زمان مشابه موجب مرگ و میر ۱ درصد از حشرات کامل شد. اسانس درمنه خراسانی در غلظت ۱۱۱۱ میکرولیتر بر لیتر هوا طی ۱۲ ساعت، مـرگ و میـر ۸۱ درصد از حشرات را رقم زد. هیچ اختلاف معنی داری بین LT_{50} به دست آمده از اسانسها در غلظت LT_{50} های ۷۴۱ و ۱۱۱۱ میکرولیتر بر لیتر هوا مشاهده نشد. مقادیر LC₅₀ درمنه خراسانی، رزماری و یونه کوهی در ۲۴ ساعت قرارگیری در معرض اسانس، بهترتیب ۲۲/۴۵، ۲۲/۱۴ و ۳۹/۹۶ میکرولیتر بر لیتر هوا بهدست آمد. براساس مقادیر LC50، حشرات کامل شیشه آرد حساسیت مشابهی را به اسانس درمنه خراسانی و رزماری از خود نشان دادند، اما اسانس یونه کوهی سمیت کمتری از خود نشان داد. علی رغم یایین بودن خواص سمیت تنفسی اسانس یونه کوهی، خاصیت دورکنندگی آن نسبت به سایر اسانس-های مورد مطالعه بالاتر بود.

واژگان کلیدی: اسانس، سمیت تنفسی، خواص دور کنندگی، Artemisia khorassanica, هواژگان کلیدی: اسانس، سمیت تنفسی، خواص دور کنندگی، Tribolium confusum