Research Article

Variation of supercooling point in overwintering larvae of *Scrobipalpa ocellatella* (Lepidoptera: Gelechiidae)

Zahra Ganji and Saeid Moharramipour*

Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box: 14115-336, Tehran, Iran.

Abstract: The beet moth, *Scrobipalpa ocellatella* (Boyd) (Lepidoptera: Gelechiidae) is one of the most destructive pests of beet. The insect overwinters as larvae of different instars in beets which are left in the field. Supercooling point (SCP) of individual larvae showed broad range variation from -6 to -25 °C. In the present study, factors affecting the broad range of SCP were investigated. Larvae showed a great increase in SCP when they were induced by exogenous ice nucleation. Defensive oral discharge (DOD) decreased SCP but it had no significant effect on supercooling ability of larvae. The presence of sufficient food in guts of field collected larvae induced an increase in SCP. Therefore it could be concluded that surface moisture and food particles in the gut may act as ice nucleating agents (INAs) that cause freezing of the body fluids at higher temperatures. Furthermore, second and third instar larvae, owing to their small size, had greater capacity to supercool in comparison to fifth feeding instars. Broad range in SCPs might be due to diversity in overwintering larvae which have different capacity for supercooling.

Keywords: beet moth, *Scrobipalpa ocellatella*, Supercooling point, Defensive oral discharge, Ice nucleating agents

Introduction

Insects must have the ability to survive at low temperatures, because for many ectotherm organisms, even brief exposure to subzero temperatures causes injury or death (Lee *et al*., 1991; Sømme, 1999). Many insect species must have physiological, biochemical and behavioral mechanisms for survival in the lethal subzero temperatures. Insects use two main strategies for winter survival: freeze avoidance and freeze tolerance (Salt, 1961; Zachariassen, 1985). Unlike the freeze tolerant species, freeze avoiding insects are not able to survive freezing (Sømme, 1999). The majority of investigated arthropods are freeze avoiding (Block, 1991; Sømme, 1999). They may enhance their capacity to supercool by elimination of the ice nucleators by some mechanisms such as gut clearing, synthesizing the antifreeze proteins and accumulating low molecular weight cryoprotectants (for example sugars and polyols) (Zachariassen, 1985; Bale, 1989; Lee, 1989; Zhao, 1997). Freeze tolerant insects employ exogenous or endogenous ice nucleating agents to stimulate ice growth, while, ice growth will increase the risk of death for freeze intolerant species. Ice nucleating agents (INAs) include bacteria (Strong-Gunderson *et al*., 1990; Lee *et al*., 1993), fungi (Tsumuki *et al*., 1992), proteins and lipoproteins (Zachariassen and Hammel, 1976;
Duman et al., 1991), crystalloid compounds (Mugnano et al., 1996), food particles (Cannon and Block, 1988) and surface moisture (Zachariassen, 1985). Some nucleators such as microorganisms or crystalloid compounds may be present in food particles in the gut. In many insect species, the cessation of feeding and gut purging are important preparations for winter survival (Sømme, 1999). Supercooling point (SCP) is the spontaneous nucleation temperature with desiccant present and the inoculative freezing point (IFP) refers to the temperature at which organism freeze when surrounded by ice (Sømme, 1982; Zachariassen and Kristiansen, 2000). INAs by promoting the SCPs and cold hardiness affect winter survival (Zachariassen and Hammel, 1976). Many temperate insects lower their SCPs through evacuation of gut to remove food particles that might initiate the freezing process (Salt, 1961; Baust and Rojas, 1985; Zachariassen, 1985; Duman, 2001).

Insects must sequester sufficient reserves prior to the onset of low temperatures that increase overwintering ability. Most insects are exposed to lack of food and are able to overwinter at a certain developmental stage during the winter; other stages often die during cold months. For instance, the elm leaf beetle, rice stem borer and the cabbage moth overwinter as adults, last instar larvae and pupae, respectively (Goto et al., 2001; Atapour and Moharramipour, 2009; Soudi and Moharramipour, 2011) that do not have any access to food during cold months. However, some insects overwinter at different developmental stages especially larval stage that feed all the seasons even throughout overwintering. The beet moth, Scrobipalpa ocellatella (Boyd) (Lepidoptera: Gelechiidae) causes serious damage in sugar beet fields. It has 3-6 generations through a year in Iran. S. ocellatella overwinters in different larval instars within vegetation residues and in non-harvested beet roots in the field. This pest has five larval instars (Kheyri et al., 1980). In Iran, sugar beet is harvested usually in late October and early November. After harvest, last instar larvae may overwinter in residues when no food is available. But the beet moth can overwinters as larvae of different ages in fresh leaves of winter beet crop over the winter. We argue that larvae of S. ocellatella are able to reserve sufficient nutrients before the harvest. It seems that larvae of the beet moth utilizes freeze avoidance strategy to survive subzero temperatures. Our previous investigations showed that the larvae of different ages have high tolerance to cold and 50% of individuals can tolerate -19 ºC for 2 hours in February (Ganji et al., unpublished data).

No study has been performed to assess SCP and cold hardiness of S. ocellatella. As the beet moth larvae die upon freezing, effective factors on SCP may play important role in overwintering success of the pest. In this study, the possible role of surface moisture and food particles has been investigated on supercooling capacity of S. ocellatella larvae during autumn and winter in Karaj, Iran.

Materials and Methods

Sample collection
The sugar beet plants were collected in autumn and winter of 2012 from Karaj, Iran (35°83'96"N, 50°86'63"E, 1293 m from sea level) and transferred to laboratory. The larvae were carefully picked from sugar beet plants.

Supercooling point determination
The supercooling points (SCPs) were measured according to Saeidi et al. (2012). After drying the larval bodies by placing them on absorbent tissues, the SCP was recorded with a thermocouple (NiCr-Ni probe) attached with a sticky tape to the ventral body surface of the insects. The insects were cooled in a programmable thermal chamber (Binder, model MK53, Germany) with a cooling rate of 0.5 °C/min. The lowest temperature prior to temperature increase was taken as the SCP of the individuals.

SCP of fed and starved larvae
Field collected larvae in September 2012 were used in this experiment. Larvae of the beet moth were divided into three groups. 1- Fed last instar larvae: groups of 16 feeding individuals kept on food source to continue feeding before...
SCP measurement, 2- wandering larvae: in the beet moth, the last instar turns reddish when it ceases feeding; This stage is referred to as wandering, and 3- small (mixture of second and third instar) larvae. SCP of three groups (ca 16 larvae in each group) was determined.

In other experiment, last instar feeding larvae and prepupae collected in January 2012 were used for SCP determination. 1- SCPs of 20 feeding individuals kept on food source were determined. 2- groups of 16 feeding larvae were held in Petri dishes and stored without any food for 24 h to allow excretion of the food particles prior the onset of SCP experiment (starved larvae). During this time, the larvae were held in outdoor conditions. 3- The prepupae, referred to as final instar, turn violet before pupation; in addition their bodies change to fusiform in shape.

SCP of defensive oral discharged larvae

Last instar larvae (12 larvae) were provoked by a fine soft brush to induce defensive oral discharge (DOD) prior to SCP determination. SCP of the intact larvae was measured as control. The experiment was conducted in December 2012.

SCP of the wet caterpillars

To investigate effect of surface moisture on SCP of last instars, larvae were wrapped in cotton soaked in distilled water. To immobilize the larvae, they were placed in wells of ELISA plate chambers. This experiment was carried out in January 2012 and compared with dried control larvae.

Statistical Analysis

Distribution of SCP is often bimodal (Spicer and Gaston, 1999). The separation of bimodal SCP distributions into high (with higher SCP) and low (with lower SCP) groups have been well discussed by Cannon and Block (1988). However, the break points in bimodal distributions are often determined arbitrarily; for example based on an obvious break in SCP (Worland and Convey, 2001; Sinclair et al., 2003; Chen and Kang, 2005). The data were analyzed by the t-test and one-way analysis of variance (ANOVA) using SPSS version 18.0 (SPSS Inc., 2009). Means were compared by post hoc Tukey's test at $P < 0.05$. SCPs of individuals were divided into two groups, upper and lower than median and percent frequency of each group was calculated.

Results

Effects of feeding condition and body size on SCP

Frequency distribution of SCPs in fed, wandering last instar and small (mixed 2nd and 3rd) larvae of *S. ocellatella* collected in September 2012 are shown in Fig. 1. There were significant differences between SCP of fed, wandering and small larvae (F= 8.386; df= 2, 48; $P < 0.01$). SCP (mean ± SE) of fed, wandering and small larvae was -15.9 ± 0.87, -20.4 ± 0.84 and -19.8 ± 1.21 °C, respectively. The highest and the lowest SCP were observed in fed and small larvae, respectively. However, there were no significant differences between SCP of small and wandering larvae.

SCP of prepupae, fed and starved last instar was significantly different (F= 10.015; df= 2, 53; $P < 0.001$). So that prepupae, fed and starved last instar larvae had supercooling capacity of -21.1 ± 0.69, -15.7 ± 1.04, and -19.0 ± 0.89 °C, respectively. SCP in fed larvae was significantly higher than prepupae and starved larvae. The SCPs of starved and prepupae individuals ranged from -13.0 to -23.4 °C and -17.9 to -26.1 °C, respectively. However, SCPs of fed larvae ranged from -5.8 to -21.8 °C. Almost all prepupae and about 90% of starved larvae showed SCP below the break point, while it was 70% in fed larvae (Fig. 2).

Gut condition

The most gut fullness was observed in fed larvae. Starved larvae excreted most food particles after 24 h so it was sufficient time for gut depletion. Also no food particles were observed in guts of wandering larvae. Gut content in three groups are shown in Fig. 3.
Variation of SCP in *S. ocellatella* ___ J. Crop Prot.

Feeding last instar larvae

- UG SCP = -12.5°C (43.8%)
- LG SCP = -18.5°C (56.2%)
- Mean SCP = -15.9 ± 0.87 °C

Wandering larvae

- UG SCP = -12.3°C (13.4%)
- LG SCP = -21.8°C (86.6%)
- Mean SCP = -19.8 ± 1.21 °C

Small larvae

- UG SCP = -12.2°C (10%)
- LG SCP = -21.3°C (90%)
- Mean SCP = -20.4 ± 0.84 °C

Figure 1 Frequency distribution of supercooling points (SCPs) in response to developmental stages. Fed, and wandering last instar and small (2nd and 3rd) instar larvae of *S. ocellatella* collected in September 2012. The break point is designated at –14 °C between lower group (LG; SCP < –14 °C) and upper group (UG; SCP > –14 °C). Mean SCP, the percent frequency in LG, UG and mean SCPs in each group are indicated in the figure (n = 51).
Figure 2 Effects of food particles in frequency distributions of supercooling point (SCP). Fed and starved last instar larvae and prepupae of *S. ocellatella*. All samples were collected in January 2012. The break point is designated at $-14 \, ^\circ C$ between lower group (LG; SCP < $-14 \, ^\circ C$) and upper group (UG; SCP > $-14 \, ^\circ C$). Mean SCP, the percent frequency in LG, UG and mean SCPs in each group are indicated in the figure (n = 56).
Effects of defensive oral discharged larvae on SCP
The mean SCP of non-disturbed larvae was -13.1 ± 1.69 °C (ranging from -6.7 to -24.4 °C) but that of disturbed larvae was -17.0 ± 1.34 °C (ranging from -7.5 to -23.8 °C) (Figs. 4 and 5). However, despite the variation about 4 °C between them, it was not significantly different ($P > 0.05$).

SCPs of wet caterpillars
Wet larvae had limited ability to supercool. Mean SCP and inoculative freezing points (IFP) were -8.0 ± 0.99 (-2 to -13 °C) and -17.8 ± 0.92 °C (-8 to -21 °C), respectively. There was significant difference between SCPs and IFPs ($t = 6.908; df = 30; P < 0.001$). All of the wet individuals froze at temperatures above the median (break point) but 25% of the individuals showed higher SCP in control (Fig. 6).

Figure 3 (A) Fed (left), starved (middle) and wandering (right) last instar larvae of *S. ocellatella* and (B) following their gut condition. All samples were collected in January 2012. Food particles have been almost removed after 24 hours in starved larva and no food particle is observed in wandering larval gut.

Figure 4 Last instar larva of *S. ocellatella* before (left) and after (right) defensive oral discharge (DOD). Disturbed larvae discharge a defensive secretion from mouth. Gut darkness disappears after DOD induction.
Figure 5 Effects of defensive oral discharge (DOD) on frequency distribution of supercooling points (SCPs). Non-disturbed, and disturbed last instar larvae of *S. ocellatella*. All samples were collected in December 2012. The break point is designated at –14 °C between lower group (LG; SCP < –14 °C) and upper group (UG; SCP > –14 °C). Mean SCP, the percent frequency in LG, UG and mean SCPs in each group are indicated in the figure (n = 24).

Figure 6 Frequency distribution of supercooling points (SCPs) in response to surface moisture. Dry and wet last instar larvae of *S. ocellatella*. All samples were collected in January 2012. The break point is designated at –14 °C between lower group (LG; SCP < –14 °C) and upper group (UG; SCP > –14 °C). Mean SCP, the percent frequency in LG, UG and mean SCPs in each group are indicated in the figure (n = 27).
Discussion

Our results showed that larvae of *S. ocellatella* overwinter as three developmental forms in Iran: 1) Prepupae and wandering (non feeding last instar) larvae with empty gut and low SCP. The final stage larva before changing to pupa usually is referred to prepupa. At prepupal stage, it creates gut purging. 2) Last instar larvae before emergence to prepupae with full gut, relatively high SCP and low cold tolerance. 3) Penultimate (second and third instar) larvae with full gut and lower SCP.

Freeze tolerant species survive the formation of internal ice, while freeze intolerant insects die upon freezing (Sømme, 1999). The *S. ocellatella* show a bimodal separation of SCP into upper (with higher SCPs) and lower (with lower SCPs) groups. There was large variation ranging from -6 to -25 ºC in SCPs among individuals during studied months. Similar to our results the supercooling values of field fresh, starved and wet caterpillars of *Embryonopsis halitecilla* Eaton were -17.6, -15.4 and -6.7 ºC, respectively (Klok and Chown, 2005).

SCPs of some insect species have been investigated in dry and moist condition (Humble and Ring, 1985; Shimada and Riihimaa, 1988; Gehrken et al., 1991; Larsen and Lee, 1994; Coyle et al., 2011; Boardman et al., 2012). Wet insects had limited ability to supercool, because of higher probability of lethal freezing in those insects. Surface moisture resulted in a significant elevation of freezing points. The beet moth caterpillars froze easily at -8.0 ± 1.44 ºC when inoculated with ice. Humid microenvironment encouraged ice nucleating and caused freezing of the body fluids at relatively high temperatures (Zachariassen, 1985). Because of obvious effect of moisture on SCP, body surface of larvae were dried before experiments, so that the surface moisture could not affect the SCP and could not be the reason for high diversity in SCP. Interestingly, live beet moth larvae in contact with ice were observed inside the frozen sugar beets in the field.

The non-disturbed caterpillars had limited supercooling ability. They froze at higher temperatures (-13 ºC) compared to disturbed caterpillars (-17 ºC). But the difference was not significant. Unlike this pest, in *Hippodamia convergens* Guerin-Meneville stimulated adult has distinct effect on SCP due to reflex bleeding (Nedved, 1993).

Small larvae showed good supercooling ability and supercooled to -20.4 ºC in comparison to feeding last instar larvae, that may be related to small body size (Zachariassen and Kristiansen, 2003) and therefore lower water content (Vali, 1995). Also, lower food quantity in gut of small larvae could enhance supercooling capacity and permit body fluid to remain unfrozen at subzero temperatures. As gut nucleators play an important role in freezing, feeding cessation and then gut evacuation is a reflex to subzero temperatures that provide the possibility of decreased freezing and therefore result in a reduction of the mean individual SCPs (Block and Sømme, 1982). In regions with low temperatures, feed cessation allows organisms to be physiologically inactive for long periods (Worland and Convey, 2001; Sinclair and Chown, 2005). Insects stop feeding due to many factors including molting and low temperature. Enforced starvation acts as natural feed cessation mechanism to reduce SCP (Worland and Convey, 2001). Gut fullness during autumn and winter indicated that larvae were continuously feeding. Larvae with food in their alimentary canal froze at higher temperatures compared to gut evacuated larvae. Feeding larvae of *S. ocellatella* were found in sugar beets throughout the cold months. As shown in Fig. 3, insects (*S. ocellatella*) that were kept away from the food evacuated their guts and starvation greatly affected their SCP. The effects of feeding on SCP have been studied in several insects (Parish and Bale, 1990; Worland and Convey, 2008; Hiiesaar et al., 2011; Boardman et al., 2012). In nature many insect species stop feeding to prepare for cold months (Denlinger, 1991; Fields et al., 1998). Therefore in many experiments of cold hardiness studies, similar to field conditions, insects were held without any food before the onset of experiments preventing the induction of ice nucleation (Milonas and Savopoulou-Soultani, 1999; Hiiesaar et al., 2011). While in some insects such as *S. ocellatella* which overwinter in food source (beets) feeding in suitable condition, gut content plays fundamental role in SCP and successful overwintering.
The results showed that the SCP of fed larvae was higher than starved larvae and prepupae. Therefore larvae with more food particles in their guts induce freezing at higher temperature. After feeding cessation naturally or due to laboratory starvation, the SCP of *S. ocellatella* larvae dropped about 5 degrees. This improved capacity to withstand supercooling is explained by the absence of food particles in alimentary canal which induce ice formation at low temperatures (Carrillo et al., 2005; Zachariassen et al., 2008). Susceptibility to inoculative freezing varies depending on intrinsic factors. The effect of inoculative nucleation is depending on the INAs used and the anatomic site of application (Steigerwald et al., 1995).

This study indicates that variation in SCP may be related to several factors, such as gut fullness and surface moisture that induce freezing. The majority of overwintering larvae were wandering larvae that stopped feeding. Very low SCPs were observed in wandering larvae and prepupae. These larvae survived at low temperatures due to empty gut. Smaller portion of the overwintering population were the penultimate larvae. In spite of their continuous feeding they were observed until late winter. The sugar beet root heads remain in field and larvae of different ages pass the autumn and winter on them. Along with decrease in air temperature and root head drying, one group of last instar larvae complete their development, cease feeding and empty their gut but do not leave sugar beets, referred to wandering larvae. If the plants become dry the larvae seek refuge in soil and wet shelters.

Wandering larvae and prepupae were found to be the most tolerant individuals to cold in overwintering populations of the beet moth (Ganji et al., unpublished data). Mild winter may not be favorable for wandering larvae, because it may affects metabolic rate, increase respiration and thereby cause mortality and reduce population, while such condition may be in favor for younger larvae by providing situation for feeding and energy reserve. Wandering larvae are the majority of population, so mild winters could reduce overwintering population of *S. ocellatella*. According to our observations, wandering larvae of *S. ocellatella* are the most important forms of developmental stages during the winter and are responsible for maintenance of pest population until the next growing season.

References

Coyle, D. R., Duman, J. G. and Raffa, K. F. 2011. Temporal and species variation in cold hardiness among invasive Rhizophagous...

تغییرات نقطه انجامد در لاوهای زمستان گذزان بید چغندر قند

Scrobipalpa ocellatella (Lepidoptera: Gelechiidae)

زهرا گنجی و سعید محرمی‌پور

گروه حشره‌شناسی کشاورزی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

* محقق مسئول دریافت: ۱۷ خرداد ۱۳۹۳؛ پذیرش: ۲۱ مهر ۱۳۹۳

کلیدی واژگان: بید چغندر، سروبیالپا، دهان، مطالعه‌ای نسبت به شدت انجامد درون‌نوع از ماهیت مصرف غذای دهنده.