Combination of *Trichoderma* species and *Bradyrhizobium japonicum* in control of *Phytophthora sojae* and soybean growth

Najmeh Ayoubi¹, Doustmorad Zafari¹* and Mansoureh Mirabolfathy²

¹ Department of Plant Protection, Bu-Ali Sina University, Hamedan, Iran
² Iranian Research Institute of Plant Protection, Tehran, Iran

Abstract: Soybean, *Glycine max* (L.) Merr is one of the most important oilseed plants in the world and *Phytophthora* root and crown rot is a significant limiting factor for its planting. In the present study the antagonistic effect of 12 *Trichoderma* spp. *in vitro* and these *Trichoderma* spp. in combination with *Bradyrhizobium japonicum* *in vivo* on *Phytophthora sojae* and soybean growth were tested. In laboratory tests the effects of *Trichoderma* isolates were studied in dual culture, volatile compounds and culture filtrate metabolites. The most hyphal growth inhibitions were obtained using *T. virens*, *T. orientals* and *T. brevicompactum* in dual culture tests and *T. atroviride* in volatile compounds test. The effects of *Trichoderma* culture filtrates on *P. sojae* hyphal growth were studied at six concentrations in CMA medium and the results showed that culture filtrates of all species inhibited the hyphal growth and that different concentrations had different inhibitory effects. The most inhibition was obtained by *T. virens* and *T. brevicompactum* culture filtrates.

The greenhouse tests were carried out as two experiments. In the first experiment the effects of coated seeds with *Trichoderma* isolates and *B. japonicum*, alone and in combinations, on control of *P. sojae* and in the second experiment the effect of these two biocontrol agents on soybean growth, alone and in combinations, were assayed. In the first experiment, germination percentage, damping-off, seedling vigour index (SVI) and disease severity were measured and results showed that *T. brevicompactum* as alone and in combinations, was the most effective species. In the second experiment, coated seeds with *Trichoderma* isolates and *B. japonicum*, as alone and in combinations, significantly promoted the growth of treated seeds and the most effective species were *T. orientals*, *T. brevicompactum* and *T. spirale*. Hence, results indicate that *T. brevicompactum*, as the second most common species after *T. harzianum* in Iran, was the most successful species applied individually and in combinations with *B. japonicum* to act as biocontrol agent for *P. sojae* and was also able to promote plant growth.

Keywords: biocontrol, *Trichoderma brevicompactum*, *Phytophthora sojae*, *Bradyrhizobium japonicum*

Introduction

Phytophthora sojae Kaufmann & Gerdemann causes root and stem rot of soybean (*Glycine max* L. Merr.), a serious and widespread disease (Grau et al., 2004) and is one of the most destructive diseases of soybean in Iran (Mohammadi et al. 2007; Mirabolfathy et al., 2000). Infected seeds may fail to emerge and infected seedlings are killed shortly after emergence. Plants infected at the primary leaf stage display typical “damping-off” and root and stem rot symptoms (Erwin and Ribeiro 1996).

Species of the genus *Trichoderma* are well documented as fungal biocontrol agents...
Trichoderma and Bradyrhizobium to control Phytophthora sojae _______________________ J. Crop Prot.

(Papavizas, 1985; Howell, 2002). These species are useful, avirulent plant symbionts that act as bicontrol agents against phytopathogenic fungi via mechanisms of competition, rhizosphere competence, mycoparasitism, antibiotic and enzyme production, induced resistance, and promoting plant growth (Harman et al., 2004; Howell, 2003). The majority of Trichoderma species are antagonists for phytopathogenic fungi and have been broadly used as the most important biocontrol agents (Tjamos et al., 1992).

Bradyrhizobium japonicum is an agronomically important gram-negative bacterium that has the ability to form root nodules on soybeans and to fix atmospheric nitrogen (Isawa et al. 1999).

Biological control using antagonistic microbes alone, or as supplements to minimize the use of chemical pesticides in a system of integrated plant disease management, has become more important in recent years. Beneficial microbes, including antagonistic bacteria and fungi, applied as seed treatments provide unique opportunities and benefits for crop protection especially against soil-borne fungal pathogens (Harman 1991; Mao et al. 1997). However, the use of antagonistic fungi, especially Trichoderma and Gliocladium spp., has been more extensive than their bacterial counterparts (Ganesan et al., 2003). Bacteria isolated from the rhizosphere and belonging to a wide variety of genera have the potential to suppress diseases caused by a diversity of soil-borne plant pathogens. Some symbiotic N2 fixing Rhizobium strains not only fix atmospheric N2 in the nodules but also show an antagonistic effect against soil-borne pathogens (Ganesan et al. 2007).

Saber et al. (2009) found dual inoculation of faba bean seeds with a mixture of R. leguminosarum and Trichoderma species followed by foliar spraying with Trichoderma led to significant enhancements in number and dry weight of nodules and nitrogenase activity during the growth period of faba bean. Based on their data, the use of T. viride combined with R. leguminosarum is an effective strategy for an integrated management of chocolate spot disease as well as increasing growth and productivity of faba bean.

Considerable research has been done to investigate combination of Rhizobium and Trichoderma for protection against many soil borne plant pathogens. In this research, biocontrol effects of native Trichoderma isolates and B. japonicum on root and stem rot of soybean were evaluated.

Material and Methods

Pathogen

Soybean plants showing root and stem rot symptoms were collected from fields of Lorestan province (Iran). The isolation of the pathogen from diseased plants was performed on Corn Meal Agar (CMA) and CMA-PARPH media. Identification was achieved according to features of sexual and nonsexual reproduction organs and colony characteristics of isolates (Erwin and Ribeiro, 1996). The pathogenicity of the obtained isolates of Phytophthora sojae was studied in a pot culture experiment as described by Xiao et al. (2002). Then a typical isolate of the P. sojae was selected for further studies.

Trichoderma and B. japonicum isolates

The Trichoderma isolates used in this study were Trichoderma ceramicum, T. virens, T. pseudokoningii, T. koningii, T. koningiosis, T. atroviridae, T. viridescens, T. asperellum, T. harzianum, T. orientalis, T. brevicaulis and T. spirale that have been isolated from fields of Iran and provided by Zafari (Plant Protection Department of Bu-Ali Sina University). B. japonicum used as biocontrol bacterium in this study was produced by Fanavari Zisti Tabiatgara Company. This product was used at the rate of 1 lit/kg seed for seed coating treatment.
In vitro evaluation of *Trichoderma* spp. against *P. sojae*

Dual culture technique

Five millimeter discs of *P. sojae* mycelium, that were aseptically punched with sterile cork borer (No. 5) from the periphery of actively-growing cultures, were placed at the periphery on surface of Petri dishes containing CMA medium and incubated at 25 ± 1 °C. After two days of mycelial growth, each plate was inoculated at equal distance on the opposite side of Petri dish with mycelial plug 5-mm diameter of the *Trichoderma* isolates. *Trichoderma* isolates for inoculation were obtained from the margin of actively growing 7-day old cultures on PDA. A completely randomized experimental design with four Petri dishes for each isolate was used. In control plates (without *Trichoderma*), a sterile agar disc was placed at the opposite side of the *P. sojae* plates. Inoculated plates were incubated at 25 ± 1 °C until the end of the incubation period (7 days after inoculation). Two, four and six days after the incubation, radial growth of pathogen was measured and percent inhibition of average radial growth was calculated relative to growth of the controls as follows (Datta *et al*., 2004):

\[
I(\%) = \frac{C - T}{C} \times 100
\]

Where:
- \(I\) = Percentage inhibition of pathogen by antagonists
- \(C\) = Radial growth in control
- \(T\) = Radial growth in the treatment

Effect of non-volatile inhibitors

Mycelial discs of each *Trichoderma* isolate grown on PDA was separately inoculated into 100 ml flasks containing potato dextrose broth and incubated at 28 ± 2 °C and 120 rpm in rotary shaker incubator for 10 days. Mycelial mats then were separated from the broth by filtering through ashless Whatman no. 1 filter paper. The filtrates were vacuum-filtered through sterile 0.22 mm millipore filters. Filter-sterilized culture filtrates from each *Trichoderma* sp. were added to autoclaved CMA to give concentrations of 5, 10, 20, 30, 35 and 40 % (V/V). After cooling to 45 °C, 15 ml of each concentration were poured into 9-cm diameter culture plates, allowed to solidify, and inoculated with a 5-mm mycelial plug of a 5-day-old CMA culture of *P. sojae* (Dennis and Webester, 1971a). Plates containing CMA without culture filtrates served as controls. All plates were incubated for 7 days at 25 °C. The percentage inhibition of radial growth was calculated and evaluated using completely randomized design by SAS software.
Evaluation of *Trichoderma* spp and *B. japonicum* in greenhouse

Preparation of *P. sojae* inocula

P. sojae grown on CMA at 25 °C for 7 days was used as inoculum for infesting the soil by blending the contents of 14 plates in one liter of deionized water.

Preparation of Conidial Suspensions of *Trichoderma* spp.

A conidial suspension of each *Trichoderma* isolate was prepared from a 10-day old culture of the isolate on PDA. The plate (9cm diameter) was flooded with 10ml of sterilized distilled water and shaken for a few minutes. The resulting suspension was filtered through muslin cloth. After filtering the suspensions through double layer of cheese cloth, the conidial concentration of the filtrate was adjusted to 4×10^5 conidia/ml.

Seed treatment: Undamaged and clean seeds of soybean cv. Williams were surface sterilized (alcohol 70 %, 3 min; sodium hypochlorite 3%, 3 min), rinsed 6 times with sterile water, and shade dried. Then, eight ml of a *Trichoderma* conidial suspension containing 4×10^5 conidia/ml was used for coating 100 g of sterilized soybean seeds that were immersed for 30 min in 1 % carboxymethylcellulose (CMC, Merck) suspension of *Trichoderma* spp. The seed coating procedure with *B. japonicum* was conducted according to the method described by manufacturer. For coating of seeds by both antagonists, the two suspensions were mixed together. Seeds soaked in sterile water and treated with CMC without antagonist were used as control.

Pot experiments

Experiment 1

Effects of *Trichoderma* isolates and *B. japonicum* (singly and in combinations) as biocontrol agents for *P. sojae*.

Coated seeds planted in non infested soil were used as control. Pathogen inocula were added to soil at a rate of 250 ml per kg soil, pots were maintained for 3 weeks and the following parameters were estimated:

- Germination percentage: Three weeks after sowing, the germinated seeds were counted and the germination percent was calculated.
- Damping-off: number of seedlings that died after germination.
- Seedling Vigour Index (SVI): The germination percentage was calculated as mentioned above. The morphological parameters like shoot length and root length were measured and the vigour index (VI) of the seedlings was estimated as suggested by Abdul-Baki and Anderson (1973): Vigour Index = Germination percentage X Seedling length.
- Disease severity: Seedlings were rated using a 5-class scale system: 0, healthy or no apparent root discoloration; 1) less than 25 % discoloration of the roots; 2) 25 – 50 % discoloration of the roots; 3) 50 – 75 % discoloration of the roots; and 4) more than 75 % discoloration of the roots or dead plants.

Experiment 2

Effects of *Trichoderma* isolates and *B. japonicum* (singly and in combinations) on plant growth. In this experiment coated seeds with *Trichoderma* isolates and *B. japonicum*, as alone and in combinations, were planted in sterile soil and grown for 30 days. The measured parameters in this experiment were seedling height (cm), root length (cm), shoot fresh weight (gr), root dry and fresh weights (gr).

In both experiments silty loam soil was collected from the field and pasteurized with water vapor for 4 h at 95 ± 5 °C. The infested soil and non infested soil were poured into 17-cm-diameter plastic pots and five of the treated or untreated seeds were planted in each pot. Pots were maintained at the photo periods of 12 h light at 25 °C and 12 h dark at 20 °C. Subsequently all pots were watered.
when the soil surface dried. Three pots were maintained for each treatment.

Data analysis

Each experiment was done two times and the data from the trials were combined for statistical analysis using (SAS).

Results

In vitro evaluation of *Trichoderma* spp. against *P. sojae*:

In studying *Trichoderma* isolates and the *P. sojae* in dual culture, all of the *Trichoderma* isolates had marked significant inhibitory effect on the growth of the pathogen compared with their controls. Maximum *P. sojae* growth inhibition occurred in interacting with *T. virens*, *T. orientalis* and *T. brevicampactom* (57 % approximately).

However, in dual cultures, *P. sojae* grew slower than *Trichoderma* spp. and the area occupied by the colony was less than 50 %. *Trichoderma* isolates covered larger area on the plate and overgrew *P. sojae* colony within a period of four days. Green colour mycelial and conidial masses were observed on *P. sojae* colony. There was no zone of inhibition in between the colonies of *Trichoderma* species and *P. sojae*. The inhibition varied in dual tests from 47.45 to 58.87 % (Table 1).

In volatile metabolites test, all of the isolates significantly reduced the pathogen colony growth while the maximum growth reduction was observed in *T. atroviride* (49.08 %) and minimum in *T. viridescens* (6.17) (Table 1).

Culture filtrates of the *Trichoderma* isolates varied in the amount of inhibition of mycelial growth of *P. sojae* and different concentrations had different inhibition effects. Maximum growth reductions were observed with increasing concentrations. Culture filtrates of *T. virens* and *T. brevicampactom* showed the highest inhibition in all concentrations and at 20, 30, 35 and 40% concentrations caused up to 100 % growth inhibition. *T. asperellum* had the least inhibition (Fig. 1).

Table 1 Mean comparison of the effect of *Trichoderma* species on mycelial growth reduction of *P. sojae* in vitro.

<table>
<thead>
<tr>
<th>Trichoderma spp.</th>
<th>Dual culture test (%)</th>
<th>Volatile compounds test (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. brevicompactum</td>
<td>57.88a</td>
<td>29.58c</td>
</tr>
<tr>
<td>T. orientalis</td>
<td>57.82a</td>
<td>16.33d</td>
</tr>
<tr>
<td>T. virens</td>
<td>56.81a</td>
<td>14.87de</td>
</tr>
<tr>
<td>T. pseudokoningii</td>
<td>56.59a</td>
<td>14.63de</td>
</tr>
<tr>
<td>T. atroviride</td>
<td>56.22a</td>
<td>49.08a</td>
</tr>
<tr>
<td>T. spirale</td>
<td>56.01a</td>
<td>9.85f</td>
</tr>
<tr>
<td>T. koningiopsis</td>
<td>55.11ab</td>
<td>40.62 b</td>
</tr>
<tr>
<td>T. ceramicum</td>
<td>54.89ab</td>
<td>38.95b</td>
</tr>
<tr>
<td>T. koningii</td>
<td>54.53ab</td>
<td>17.45d</td>
</tr>
<tr>
<td>T. viridescens</td>
<td>53.28ab</td>
<td>6.17f</td>
</tr>
<tr>
<td>T. asperellum</td>
<td>50.99ab</td>
<td>29.50c</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>47.46b</td>
<td>18.66d</td>
</tr>
</tbody>
</table>

* values are average of 3 replicates. Means with the same letter in each column are not significantly different in Duncan at (P ≤0.05).
Evaluation of *Trichoderma* spp. and *B. japonicum* in greenhouse

Experiment 1

Effects of *Trichoderma* isolates and *B. japonicum*, singly and in combinations.

The results showed that there were no significant differences in any of the parameters between each *Trichoderma* treatment alone and *Trichoderma* + *Bradyrhizobium* ones. The germination percentage of treated seeds in non-infested soil was not significantly different from the untreated control, but the treated seeds germinated faster than the untreated seeds. Germination percentage of all treated seeds in infested soil, except that of *Bradyrhizobium* alone increased significantly in comparison with untreated control in infested soil. The maximum germination percentage was recorded for *T. brevicompactum* individually and in combination with *Bradyrhizobium* as 80.4% and 81.7% respectively (fig 2).

The percentage of damping-off dropped to zero in inoculated plants treated with *T. ceramicum*, *T. atroviride*, *T. koningii*, *T. virens*, *T. brevicompactum* and *T. orientalis* species solely and in combination with *Bradyrhizobium* while disease incidence was 100% in inoculated plants treated with *Bradyrhizobium* solely (fig 3).

In the non-infested soil, all *Trichoderma* spp. except *T. koningiopsis* significantly increased the SVI compared with untreated control and *Bradyrhizobium* treatment which were equal. The highest SVIs were recorded in *T. brevicompactum* and *T. orientalis* treatments, 12653.33 and 12983.33 respectively.

In the infested soil, combined application of *Trichoderma* spp. and *Bradyrhizobium* significantly increased the SVI compared with using each one alone. *T. brevicompactum* was the most successful species which increased SVI up to 6674.31 (Table 2).

Although based on seeding Vigour Index (SVI) parameters of plants treated with *Trichoderma* and *Bradyrhizobium* each one alone and in combination were not as vigorous as healthy control plants, all *Trichoderma* and *Bradyrhizobium* treatments except *Bradyrhizobium* exclusive treatment reduced disease severity compared with infected control plants. *T. brevicompactum* solely and in combination with *Bradyrhizobium* was the most effective species to reduce disease severity by 30.0 and 30.6, respectively, (fig 4).

Experiment 2

In this experiment, Effects of *Trichoderma* isolates and *B. japonicum* (singly and in combinations) on plant growth were evaluated. Coated Seeds with *Trichoderma* isolates and *Bradyrhizobium japonicum*, as alone and in combinations, significantly promoted the growth of treated seeds based on measured growth.
Factors. Fresh and dried root weights, root and shoot heights and fresh shoot weight increased nearly 2 - 2.5 folds over that of control. The most effective species were *T. orientalis*, *T. brevicompactum* and *T. spirale* (table 3).

Increased growth parameters in combined treatments may be due to synergistic relationship between *Trichoderma* and *Bradyrhizobium*. Coating with the adhesive material alone neither affected disease nor plant growth.

Table 2 Effect of *Trichoderma* and *Bradyrhizobium* seed treatment on seedling vigour index.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Trichoderma + Phytophthora</th>
<th>Trichoderma</th>
<th>Trichoderma + Bradyrhizobium + Phytophthora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated control</td>
<td>7041.25a</td>
<td>7041.25h</td>
<td>7041.25a</td>
</tr>
<tr>
<td>CMC *</td>
<td>1347.45f</td>
<td>1347.45i</td>
<td>1347.45gh</td>
</tr>
<tr>
<td>T. spirale</td>
<td>3444.99e</td>
<td>11545.42b</td>
<td>3833.65def</td>
</tr>
<tr>
<td>T. orientalis</td>
<td>5742.94bc</td>
<td>12983.33a</td>
<td>6166.73abc</td>
</tr>
<tr>
<td>T. brevicompactum</td>
<td>6670.52ab</td>
<td>12653.33a</td>
<td>6674.31ab</td>
</tr>
<tr>
<td>T. viridescens</td>
<td>2125.61f</td>
<td>9859.72def</td>
<td>3423.49ef</td>
</tr>
<tr>
<td>T. virens</td>
<td>2300.96f</td>
<td>10250.00cde</td>
<td>2624.03fg</td>
</tr>
<tr>
<td>T. pseudokoningii</td>
<td>5120.29ed</td>
<td>10660.00c</td>
<td>5149.30bcd</td>
</tr>
<tr>
<td>T. koningiosis</td>
<td>3789.88e</td>
<td>7225.00h</td>
<td>3770.28def</td>
</tr>
<tr>
<td>T. koningii</td>
<td>3737.88e</td>
<td>8623.25g</td>
<td>3778.27def</td>
</tr>
<tr>
<td>T. harzianum</td>
<td>4496.24de</td>
<td>10568.33cd</td>
<td>4443.00de</td>
</tr>
<tr>
<td>T. atroviride</td>
<td>4186.11de</td>
<td>8874.00g</td>
<td>4186.11de</td>
</tr>
<tr>
<td>T. asperellum</td>
<td>4478.18de</td>
<td>9670.17ed</td>
<td>4796.89ed</td>
</tr>
<tr>
<td>T. ceramicum</td>
<td>4523.19de</td>
<td>9201.67fg</td>
<td>4523.19de</td>
</tr>
<tr>
<td>Phytophthora alone</td>
<td>0g</td>
<td>0j</td>
<td>0h</td>
</tr>
<tr>
<td>Bradyrhizobium + Phytophthora</td>
<td>150.42g</td>
<td>150.42j</td>
<td>150.42h</td>
</tr>
<tr>
<td>Bradyrhizobium alone</td>
<td>6681.25ab</td>
<td>6681.25h</td>
<td>6681.25a</td>
</tr>
</tbody>
</table>

* Cmc: coated seeds with carboxy-methylcellulose suspension.

Means with the same letters in each column are not significantly different (P < 0.05) by Duncan’s multiple range test.
Figure 3 Percentage of damping-off caused by *P. sojae* on soybean seedlings treated with *B. japonicum* and *Trichoderma* species applied individually and in combination.

Diagram values are average of 3 replicates. Means followed by the same letter are not significantly different (P ≤ 0.05) according to Duncan’s multiple range test. Treatments are as follows: co +: control without antagonist and with pathogen. co -: control with neither antagonist nor pathogen. cmc: coated seeds with carboxy methylcellulose suspension bra: coated seeds with Bradyrhizobium and planted in non infested soil. bra + p: coated seeds with Bradyrhizobium and planted in infested soil. T + P: coated seeds with *Trichoderma* and planted in infested soil. T + P + B: coated seeds with *Trichoderma + Bradyrhizobium* and planted at infested soil. Abbreviations of *Trichoderma* species in this figure are shown as: *T. virens* (*T. vi*), *T. orientalis* (*T. or*), *T. ceramicum* (*T. ce*), *T. atroviride* (*T. at*), *T. koningii* (*T. ko*), *T. brevicompactum* (*T. br*), *T. spirale* (*T. sp*), *T. viridescens* (*T. vid*), *T. pseudokoningii* (*T. ps*), *T. harzianum* (*T. ha*), *T. asperellum* (*T. as*), *T. koningiopsis* (*T. kop*).

Figure 4 Percentage of *P. sojae* disease severity on soybean seeds treated with *B. japonicum* and *Trichoderma* species applied individually and in combination.

* Diagram values are average of 3 replicates. Means marked with the same letter(s) are not significantly different according to Duncan’s Multiple Range test (P ≤ 0.05). co +: control without antagonist and with pathogen. co -: control with neither antagonist nor pathogen. cmc: coated seeds with carboxy-methylcellulose suspension bra: coated seeds with Bradyrhizobium and planted in non infested soil. Bra + p: coated seeds with Bradyrhizobium and planted in infested soil. T + P: coated seeds with *Trichoderma* and planted in infested soil. T + P + B: coated seeds with *Trichoderma + Bradyrhizobium* and planted in infested soil. Abbreviation of *Trichoderma* species in this experiment showed as: *T. virens* (*T. vi*), *T. orientalis* (*T. or*), *T. ceramicum* (*T. ce*), *T. atroviride* (*T. at*), *T. koningii* (*T. ko*), *T. brevicompactum* (*T. br*), *T. spirale* (*T. sp*), *T. viridescens* (*T. vid*), *T. pseudokoningii* (*T. ps*), *T. harzianum* (*T. ha*), *T. asperellum* (*T. as*), *T. koningiopsis* (*T. kop*).
Table 3 Plant growth responses following seed treatments with *B. japonicum* and *Trichoderma* species applied individually and in combination.

<table>
<thead>
<tr>
<th>treatment</th>
<th>fresh root weight (g)</th>
<th>dried root weight (g)</th>
<th>root height (cm)</th>
<th>shoot height (cm)</th>
<th>fresh shoot weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>T + B</td>
<td>T</td>
<td>T + B</td>
<td>T</td>
</tr>
<tr>
<td>Co-</td>
<td>0.87f</td>
<td>0.87f</td>
<td>0.31e</td>
<td>0.31h</td>
<td>16.78abc</td>
</tr>
<tr>
<td>T. sp</td>
<td>1.96a</td>
<td>2.16a</td>
<td>0.56a</td>
<td>0.69a</td>
<td>21.83a</td>
</tr>
<tr>
<td>T. or</td>
<td>1.70b</td>
<td>1.90b</td>
<td>0.49b</td>
<td>0.62b</td>
<td>20.83ab</td>
</tr>
<tr>
<td>T. br</td>
<td>1.49b</td>
<td>1.79b</td>
<td>0.45c</td>
<td>0.58d</td>
<td>19.32bc</td>
</tr>
<tr>
<td>T. vid</td>
<td>1.59b</td>
<td>1.17de</td>
<td>0.51b</td>
<td>0.43fg</td>
<td>21.48ab</td>
</tr>
<tr>
<td>T. vi</td>
<td>0.97ef</td>
<td>1.79b</td>
<td>0.3e</td>
<td>0.64b</td>
<td>15.52e</td>
</tr>
<tr>
<td>T. ps</td>
<td>1.12de</td>
<td>1.32cd</td>
<td>0.36d</td>
<td>0.5e</td>
<td>19.23bc</td>
</tr>
<tr>
<td>T. kop</td>
<td>0.88f</td>
<td>1.14de</td>
<td>0.28e</td>
<td>0.44f</td>
<td>15.1e</td>
</tr>
<tr>
<td>T. ko</td>
<td>0.94ef</td>
<td>1.08de</td>
<td>0.31e</td>
<td>0.41g</td>
<td>15.85e</td>
</tr>
<tr>
<td>T. ha</td>
<td>1.19cd</td>
<td>1.39c</td>
<td>0.37d</td>
<td>0.5e</td>
<td>17.02de</td>
</tr>
<tr>
<td>T. at</td>
<td>0.95ef</td>
<td>1.29cd</td>
<td>0.30e</td>
<td>0.49e</td>
<td>16.57de</td>
</tr>
<tr>
<td>T. as</td>
<td>1.09de</td>
<td>1.15cd</td>
<td>0.36d</td>
<td>0.43fg</td>
<td>18.27cd</td>
</tr>
<tr>
<td>T. ce</td>
<td>0.95ef</td>
<td>1.09de</td>
<td>0.31e</td>
<td>0.42g</td>
<td>15.35e</td>
</tr>
<tr>
<td>B. japonicum</td>
<td>0.70c</td>
<td>0.60cd</td>
<td>24.08abc</td>
<td>82e</td>
<td>9.7</td>
</tr>
</tbody>
</table>

Values are average of 3 replicates. Means with the same letter(s) in each column are not significantly different from each other according to Duncan’s Multiple Range test (P ≤ 0.05). Co: neither antagonist nor pathogen. Bra: coated seeds with *Bradyrhizobium*. T: coated seeds with *Trichoderma*. T + B: coated seeds with *Trichoderma + Bradyrhizobium*. abbreviation of *Trichoderma* species in this experiment showed as: *T. virens* (*T. vi*), *T. orientalis* (*T. or*), *T. ceramicum* (*T. ce*), *T. atroviride* (*T. at*), *T. koningii* (*T. ko*), *T. brevicompactum* (*T. br*), *T. spirale* (*T. sp*), *T. viridescens* (*T. vid*), *T. pseudokoningii* (*T. ps*), *T. harzianum* (*T. ha*), *T. asperellum* (*T. as*), *T. koningiopsis* (*T. kop*).

Discussion

Trichoderma species have long been recognized as agents for the control of plant disease and for their ability to improve plant growth and development. Their antagonistic nature may be due to antibiosis, nutrient competition and cell wall degrading enzymes. In the present study, we tested *Trichoderma* species for mycoparasitism in dual culture and their production of volatile and non-volatile compounds that inhibit the growth of *P. sojae* in-vitro.

In dual culture test, all isolates reduced the colony growth of the pathogen; due to the rapid growth of *Trichoderma* isolates that quickly colonized medium surface. These observations are similar to those of Kucuk and Kivance (2004) findings. Volatile and nonvolatile metabolites of *Trichoderma* isolates reduced the pathogen colony growth; however this reduction effect was more due to nonvolatile than volatile metabolites (Table 1). Previous studies have shown that most of *Trichoderma* strains produce volatile and nonvolatile metabolites that inhibit the growth of pathogenic fungi (Vey et al. 2001). These metabolites are composed of harzianic acid, alamhincins, tricholin, peptaboles, antibiotics, 6-phénylalapha- pyrone, massoilaactone, viridian, glioiviridin, glisoprenins, heptelicid acid, and other suppressive compounds (Vey et al. 2001; Simon and Sivasithamparam, 1989; Kucuk and Kivance, 2004).

According to our results it is evident that volatile compounds from *Trichoderma atroviride* suppress the mycelial growth of *P. sojae* and are effective when compared to other spp. The earlier studies also revealed that antimicrobial metabolites such as aromatic pyrone antibiotics (Keszler et al. 2000) and peptides are produced by *T. atroviride* (Oh et al. 2000). The most successful species in culture filtrate production were *T.*
Trichoderma and Bradyrhizobium to control Phytophthora sojae

Nielsen et al. (2005) demonstrated that T. brevicompactum produced trichodermin and/or harzianum A on all media investigated, with liquid media yielding the largest amounts and Chet et al. (1997) showed that T. virens strains produced high amount of glioviridin antibiotics and protected cotton seedlings from seedling blight caused by P. ultimum in greenhouse test.

Our results indicated that combined application of Bradyrhizobium and Trichoderma species could control the pathogen significantly and promoted the growth of soybean seedlings. Harman et al. (1980) reported that Rhizoctonia solani and Pythium species were controlled by coating of Trichoderma harzianum on radish and pea seeds. T. harzianum seed coating gave the best results in reducing the disease severity compared with other treatments (Das et al., 2002). Mao et al. (1997) showed that seed treatment with Gliocladium viride and Burkholderia cepacia increased seedling stand, plant height and fresh weight, also the root rot severity decreased in corn compared with those treated with a fungicide. Chakraborty et al. (2003) reported that combined application of B. japonicum and Trichoderma harzianum significantly reduced root rot disease in soybean, they also showed that activity of PAL, peroxidase enzymes and Phytalexin (Glyceollin) activities increased in treated plants. In the present study also overall growth of the soybean plants increased in Bradyrhizobium and Trichoderma combined treatments.

These results may be due to the competition for space and nutrients, parasitism, production of enzymes, volatile and non-volatile metabolites or combinations of these mechanisms. The growth-promoting activity may be due to the solubilisation and sequestration of inorganic plant nutrients, production of unidentified growth promoting chemicals or by the N2 fixing activity of the Bradyrhizobium.

In conclusion, T. brevicompactum was found to be the most effective biocontrol agent against P. sojae in laboratory and glasshouse conditions among the studied species. Hence T. brevicompactum and Bradyrhizobium may be considered for use as biocontrol agents and biofertiliser for the management of P. sojae.

Reference

نمی‌شود. یکی از مهم‌ترین دانه‌های الگویی جهان محسوب می‌شود. یکی از عوامل مهم‌ترین دانه‌های الگویی جهان محسوب می‌شود. یکی از

چکیده: سویا، یکی از مهم‌ترین دانه‌های الگویی جهان محسوب می‌شود. یکی از

واژگان کلیدی: کنترل بیولوژیک، **Phytophthora sojae**، **Bradyrhizobium japonicum**