Research Article

Efficacy of mixture of emamectin benzoate with some insecticides on the mortality and esterase activity of fourth instar larvae of Tuta absoluta (Lepidoptera: Gelechiidae)

Mohsen Taleh¹, Hooshang Rafiee Dastjerdi¹*, Bahram Naseri¹, Aziz Sheikh Garjan² and Khalil Talebi Jahromi³

1. Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
2. Iranian Research Institute of Plant Protection, Tehran, Iran.
3. Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

Abstract: The tomato leafminer, Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) is one of the most damaging tomato pests in the world and in Iran. The toxicity of acetamiprid, eforia (thiamethoxam + lambda-cyhalothrin) and hexaflumuron alone and in mixture with emamectin benzoate was studied against 4th-instar of Tuta absoluta (Meyrick) at 25 ± 2 °C, 65 ± 5% RH and 16:8 (L:D) h. Moreover, the mixtures of examined insecticides with emamectin benzoate at LC₁₅:LC₁₅ ratio were assessed on the general esterase enzyme activity and total protein content of 4th-instar. The highest toxicity was found for emamectin benzoate after 72 h (LC₅₀ = 0.48 mg a.i/l), followed by acetamiprid (LC₅₀ = 46.94 mg a.i./l), eforia (LC₅₀ = 156.24 mg a.i/l) and hexaflumuron (LC₅₀ = 670.32 mg a.i/l). Mixing emamectin benzoate with acetamiprid at the ratio of LC₅₀:LC₅₀ and LC₂₅:LC₂₅ resulted in synergistic impacts while mix of two other ratios of the same pesticides represented additive influences. The mixture of emamectin benzoate with either hexaflumuron or eforia at all ratios created antagonistic and additive effects, respectively. Mixing emamectin benzoate with either acetamiprid or eforia increased larval esterase activity, however, there was no significant difference between emamectin benzoate in mixture with hexaflumuron and using it alone. Mixing emamectin benzoate with the examined insecticides considerably decreased the larval total protein content. Based on the findings of this work, the mixtures of eforia and acetamiprid with emamectin benzoate represented greater negative effects against 4th-instar compared to emamectin benzoate alone and the control.

Keywords: mixture effects, emamectin benzoate, acetamiprid, eforia, Tuta absoluta

Introduction

Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) is a native microlepidopteran pest in the Southern America which can affect all aerial parts of the host plants (leaves, flowers, stems and fruits). This pest has a high potential to cause up to 100% economic losses (Torres et al., 2001; EPPO, 2005; Desneux et al., 2010). Chemical control of the leafminers such as T. absoluta is difficult due to their hidden behavior inside the leaf, high reproductive capacity, polyvoltinism and poor spraying technology, so it is necessary to apply various insecticides several times in a season to control these pests (Temerak, 2011).

*Corresponding author: Hooshangrafiee@gmail.com
Received: 16 December 2019, Accepted: 28 June 2020
Published online: 31 August 2020
However, *T. absoluta* has a great potential to develop resistance to conventional insecticides such as organophosphates (OPs), pyrethroids and avermectins (Siqueira et al., 2000; Siqueira et al., 2001; Roditakis et al., 2013). Higher levels of *T. absoluta* resistance to abamectin, permethrin, Cartap and spinosad are related to the extensive application of these insecticides by farmers (Siqueira et al., 2000; Campos et al., 2014).

Using mixtures of pesticides is an effective way to postpone developing insecticide resistance or to overcome current resistance in a pest species. This method is generally utilized, in the field, to increase the control spectrum for aggressive multiple pests simultaneously or against a single pest (Ishaaya et al., 1985). The mixture of insecticides with various modes of action could result in synergistic, antagonistic or additive effects against an insect species. If the mixtures would be synergistic, the costs of excessive use of insecticides might effectively be reduced (Wolfenbarger and Cantu, 1975).

Insecticides could influence the activity of metabolic enzymes such as glutathione S-transferases (GSTs), esterases, mixed function oxidases (MFOs) as well as total protein content. General esterases and GSTs have an important role in detoxifying of synthetic and non-synthetic insecticides (Vanhaelen et al., 2001). Some studies demonstrated that the mixture of two different insecticides might result in inhibition of the detoxification enzymes in many pests and lead to their effective control (Martin et al., 2003). Several researchers reported that OPs combined with pyrethroids had synergistic effect against several pests (All et al., 1977; Asher et al., 1986). For example, mixture of chlorpyrifos with either emamectin benzoate, indoxacarb or spinosad showed synergistic effect against *Phenacoccus solenopsis* Tinsley (Hemiptera: Pseudococcidae) (Saddiq et al., 2017). The mixtures of emamectin benzoate with deltamethrin significantly increased toxicity against adult of *Musca domestica* L. (Diptera: Muscidae) Also, emamectin benzoate mixed with bifenthrin showed an antagonistic effect against this species (Khan et al., 2013). Findings of Ghoneim et al. (2012) indicated that chlorpyrifos produced high synergistic effect when mixed with hexaflumuron and triflumuron and produced an additive effect when mixed with chlorfluazuron, chromafenozide and tebufenozide on *Spodoptera littoralis* (Boisd.) (Lepidoptera: Noctuidae).

Emamectin benzoate is a new insecticide isolated from the avermectin group of natural products. These products have been utilized to control lepidopteran pests on vegetable crops worldwide, with a special efficacy against *T. absoluta* (Liguori et al., 2008).

The present study was done to find out the toxicity of mixtures of emamectin benzoate with either eforia, acetamiprid, or hexaflumuron against larval *T. absoluta* as well as their effects on some biochemical aspects such as general detoxifying esterases and total protein content in the pest. It is hypothesized that the mixtures of tested insecticides could delay the development of insecticide resistance and reduce the costs and risks of overuse of them.

Materials and Methods

Insects

The specimens of *T. absoluta* were collected from tomato greenhouses around Ardabil city, Iran. The insects were maintained in the growth chamber on the commercial tomato (*Solanum lycopersicum* L. var. Super Strain B) at 25 ± 2 °C, 65 ± 5% RH and photoperiod of 16:8 (L: D) h.

Insecticides

The insecticides had the commercial formulations as follows: emamectin benzoate (Proclaim 5% SG; Syngenta, Switzerland), acetamiprid (Acetamiprid 20% WP; Ariashimi, Iran), eforia (thiamethoxam + lambda-cyhalothrin) (Eforia 247% OD; Syngenta, Switzerland), hexaflumuron (Hexaflumuron 10% EC; Ariashimi, Iran).

Bioassays

The toxicity of tested insecticides was assessed against 4th-instar of *T. absoluta* using tomato leaves. Tomato leaves were dipped into five different concentrations of each insecticide for 15 s and left to dry for 1 h under room temperature. Twenty 4th-instar larvae of *T. absoluta* were
transferred on treated leaves placed in 9 cm diameter Petri dishes. Tween-80 was added to the insecticide preparations as a surfactant at a concentration of 0.05% (v/v). Leaves dipped in distilled water + Tween-80 were considered as the control. The mortality of larvae was recorded at 72 h after treatments. The tests were done in triplicates for each insecticide concentration (Galdino et al., 2011). Toxicity index of insecticides was evaluated by Sun method (1950); (LC₅₀ of the efficient compound/LC₅₀ of the other compound × 100).

Mixtures

Newly molted 4th-instars of T. absoluta were exposed to binary mixtures of emamectin benzoate with either acetamiprid, eforia or hexaflumuron at LC₁₅; LC₁₅ ratio, was assayed according to the method of van Asperen (1962). The substrates of α-Naphthyl acetate (α-NA) and β-naphthyl acetate (β-NA) were used for α-esterase and β-esterase activities, respectively. Fifteen 4th instars were homogenized in 70 µl of 40 mM phosphate buffer (pH 7.0) inside microtube (2 ml) on ice. The solutions were then centrifuged at 10,000 g at 4 °C for 20 min and supernatant was used as enzyme solution. The quantity of 90 µl of the substrate was added to the microplate, then preincubated at 30 °C for 10 min. The amount of 90 µl of Fast Blue RR salt was added to the microplate, then the naphthol formation was assayed by measurement of absorbance at 450 and 540 nm for α-NA and β-NA, respectively through microplate reader (Anthos Labtec Instruments GmbH, Austria). All experiments were repeated three times.

Determination of total protein content

The effect of mixtures of emamectin benzoate with either acetamiprid, eforia or hexaflumuron at LC₁₅; LC₁₅ ratio, on the total protein content of 4th-instars was determined based on Bradford (1976) method, using bovine serum albumin (Bio-Rad) (Sigma) as a standard protein. The measurement was carried out using a microplate reader at 595 nm. All experiments were repeated three times.

Data analysis

Probit analysis was used for calculating lethal concentrations (LC₃₀, LC₅₀, and LC₉₀) in SPSS software (ver.16). The mean mortality of 4th-instars treated with different concentrations of each insecticide, after checking for normality by the Shapiro-Wilk method, was analyzed by one-way analysis of variance (ANOVA) at a 5% level of significance by LSD test. Abbott’s formula (Abbott, 1925) was used for correcting mortality data.

The expected mortality (Mₑ) for mixing emamectin benzoate with different insecticides was calculated via equation Mₑ = Mₐ + Mₐ (1 - Mₑ), where Mₑ is the observed mortality caused by different insecticides and Mₐ is the observed mortality caused by emamectin benzoate. Results from a chi-square test, χ² = (Mₐ - Mₑ)²/Mₑ, where Mₐ shows the found mortality for mixing emamectin benzoate with different insecticides, were compared to the chi-square table value. When the determined chi-square value was overstepped the table value (df = 1), it would be a non-additive effect. The Mₐ - Mₑ > 0 shows synergism; and the Mₐ - Mₑ < 0 indicates antagonism (Koppenhofer and Kaya, 1996).

Data for general esterases activity and total protein content were exposed to ANOVA. The differences between means were isolated by LSD test in SPSS software ver. 16 at P = 0.05.

Results

Estimating LC₅₀ values

Toxicity values and toxicity indices estimated for all insecticides against 4th-instars of the T. absoluta are shown in Table 1. The data
Efficacy of mixture of emamectin benzoate on T. absoluta

J. Crop Prot.

J. Crop Prot. 15:LC50 50 50 48 25 Efficacy of mixture of emamectin benzoate on T. absoluta_______________________________ J. Crop Prot. 702 ... P > 0.05) showed no significant differences between the mixtures, emamectin benzoate alone and the control (Fig. 1).

Mixtures

Binary mixtures of emamectin benzoate with efoiria, acetamiprid, and hexaflumuron at different concentrations showed additive, synergistic and antagonistic interactions (Table 2). The mixtures of emamectin benzoate with acetamiprid at LC50:LC10 and LC50:LC15 ratios showed additive effects. The emamectin benzoate mixed with acetamiprid at LC25:LC25 and LC50:LC50 ratio showed synergistic interaction and its mixtures with efoiria at LC10:LC10, LC15:LC15, LC15:LC25 and LC50:LC50 showed additive effects. The mixture of hexaflumuron with emamectin benzoate showed an antagonistic interaction.

Table 1 Toxicity of tested insecticides against 4th-instars of Tuta absoluta under laboratory conditions.

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>LC10 (mg AI/L) (95% CL)</th>
<th>LC15 (mg AI/L) (95% CL)</th>
<th>LC25 (mg AI/L) (95% CL)</th>
<th>LC50 (mg AI/L) (95% CL)</th>
<th>Slope ± SE</th>
<th>(\chi^2)</th>
<th>Toxicity index at LC50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emamectin benzoate</td>
<td>0.14 (0.10-0.16)</td>
<td>0.18 (0.15-0.2)</td>
<td>0.25 (0.22-0.28)</td>
<td>0.48 (0.45-0.51)</td>
<td>2.4 ± 0.16</td>
<td>1.32</td>
<td>100</td>
</tr>
<tr>
<td>Acetamiprid</td>
<td>15.04 (10.68-18.88)</td>
<td>18.7 (14.04-22.68)</td>
<td>25.79 (20.95-29.85)</td>
<td>46.94 (42.17-52.11)</td>
<td>2.5 ± 0.28</td>
<td>2.08</td>
<td>1.02</td>
</tr>
<tr>
<td>Efoiria</td>
<td>24.94 (13.53-36.92)</td>
<td>35.42 (21.24-49.4)</td>
<td>59.48 (41.07-76.37)</td>
<td>156.22 (130.93-184.41)</td>
<td>1.6 ± 0.19</td>
<td>1.86</td>
<td>0.3</td>
</tr>
<tr>
<td>Hexaflumuron</td>
<td>323.9 (254.93-377.18)</td>
<td>372.24 (305.12-423.17)</td>
<td>457.13 (396.79-502.86)</td>
<td>670.32 (626.56-716.59)</td>
<td>4 ± 0.49</td>
<td>0.67</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Table 2. Mixture of emamectin benzoate with several insecticides and their interactive effects (at different doses) on 4th-instars of Tuta absoluta under laboratory conditions.

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Ratio</th>
<th>Observed mortality (%)</th>
<th>ME (%)1</th>
<th>(\chi^2)</th>
<th>P</th>
<th>N²</th>
<th>Interaction²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emamectin benzoate + Acetamiprid</td>
<td>LC10:10</td>
<td>28</td>
<td>20.8</td>
<td>2.49</td>
<td>0.05</td>
<td>180</td>
<td>additive</td>
</tr>
<tr>
<td>Emamectin benzoate + Efoiria</td>
<td>LC10:10</td>
<td>23</td>
<td>22.56</td>
<td>0.008</td>
<td>0.05</td>
<td>180</td>
<td>additive</td>
</tr>
<tr>
<td>Emamectin benzoate + Hexaflumuron</td>
<td>LC10:10</td>
<td>8</td>
<td>19.04</td>
<td>6.40</td>
<td>0.05</td>
<td>180</td>
<td>antagonistic</td>
</tr>
<tr>
<td>Emamectin benzoate + Acetamiprid</td>
<td>LC15:15</td>
<td>35</td>
<td>26.05</td>
<td>3.07</td>
<td>0.05</td>
<td>180</td>
<td>additive</td>
</tr>
<tr>
<td>Emamectin benzoate + Efoiria</td>
<td>LC15:15</td>
<td>32</td>
<td>29.45</td>
<td>0.22</td>
<td>0.05</td>
<td>180</td>
<td>additive</td>
</tr>
<tr>
<td>Emamectin benzoate + Hexaflumuron</td>
<td>LC15:15</td>
<td>10</td>
<td>26.05</td>
<td>9.88</td>
<td>0.05</td>
<td>180</td>
<td>antagonistic</td>
</tr>
<tr>
<td>Emamectin benzoate + Acetamiprid</td>
<td>LC25:25</td>
<td>60</td>
<td>45.25</td>
<td>3.59</td>
<td>0.05</td>
<td>180</td>
<td>synergistic</td>
</tr>
<tr>
<td>Emamectin benzoate + Efoiria</td>
<td>LC25:25</td>
<td>53</td>
<td>46.71</td>
<td>0.84</td>
<td>0.05</td>
<td>180</td>
<td>additive</td>
</tr>
<tr>
<td>Emamectin benzoate + Hexaflumuron</td>
<td>LC25:25</td>
<td>12</td>
<td>32.84</td>
<td>13.22</td>
<td>0.05</td>
<td>180</td>
<td>antagonistic</td>
</tr>
<tr>
<td>Emamectin benzoate + Acetamiprid</td>
<td>LC30:30</td>
<td>95</td>
<td>75.56</td>
<td>5.00</td>
<td>0.05</td>
<td>180</td>
<td>synergistic</td>
</tr>
<tr>
<td>Emamectin benzoate + Efoiria</td>
<td>LC30:30</td>
<td>78</td>
<td>76.60</td>
<td>0.02</td>
<td>0.05</td>
<td>180</td>
<td>additive</td>
</tr>
<tr>
<td>Emamectin benzoate + Hexaflumuron</td>
<td>LC30:30</td>
<td>8</td>
<td>52.16</td>
<td>37.38</td>
<td>0.05</td>
<td>180</td>
<td>antagonistic</td>
</tr>
</tbody>
</table>

1 The expected mortality of mixture.

2 The type of interaction (synergistic, additive or antagonistic) was determined by comparing the expected and observed mortalities as described by Koppenhofer and Kaya (1996).

General esterases activity

\(\alpha \)-esterase activity was higher in mixture of emamectin benzoate with either acetamiprid (0.616 \(\mu \)mol/min/mg protein) or efoiria (0.562 \(\mu \)mol/min/mg protein) at LC15:LC15 ratio as compared with emamectin benzoate alone (0.354 \(\mu \)mol/min/mg protein) or control (0.31 \(\mu \)mol/min/mg protein) \((F = 24.262; df_{15} = 4, 10; P < 0.05)\). The activities obtained for \(\beta \)-esterase \((F = 0.862; df_{15} = 4, 10; P > 0.05)\) showed no significant differences between the mixtures, emamectin benzoate alone and the control (Fig. 1).
Total protein content
The data in Fig. 2 indicate that protein content in larvae treated with emamectin benzoate mixed with either acetamiprid (1.025 µg/mg), eforia (0.924 µg/mg) or hexaflumuron (1.105 µg/mg) at LC$_{15}$:LC$_{15}$ ratio was significantly reduced as compared with emamectin benzoate alone (1.84 µg/mg) or the control (1.912 µg/mg) (F = 19.607; df$_{e,t}$ = 4,10; P < 0.05).

Figure 1 The effects of insecticides mixture on α- and β- esterase activity (mean ± SE) in 4th-instars of *Tuta absoluta*. Various letters represent that the enzymes’ specific activities vary significantly from each other by LSD test (P < 0.05). EB: Emamectin benzoate.

Figure 2 The effects of interaction of emamectin benzoate with other insecticides on the total protein content (mean ± SE) of 4th-instars of *Tuta absoluta*. Different letters represent the significant difference between the protein contents by LSD test (P < 0.05). EB: Emamectin benzoate.
Discussion

Based on the results of this study, the emamectin benzoate showed the best efficacy against 4th-instar of *T. absoluta*. Many researchers have reported the efficacy of emamectin benzoate on different insect pests like *T. absoluta* (Gacemi and Guenaoui, 2012) and *Helicoverpa zea* Boddie (Lepidoptera: Noctuidae) (López et al., 2010). Moreover, Mahmoud et al. (2013) showed a remarkable reduction in the population of *T. absoluta* and *Helicoverpa armigera* (Hübner) (Lepidoptera: Noctuidae) treated with emamectin benzoate.

Acetamiprid was the second most effective insecticide against larval *T. absoluta*, in this study, similar to Nozad et al. (2017) findings. However, Yankova and Geneva (2013) reported that acetamiprid had inadequate effectiveness towards larval *T. absoluta*. Wafiaa (2011) noted that acetamiprid could be considered as a promising candidate in controlling *Bemisia tabaci* (Homoptera: Aleyrodidae) with a lower value of harmful effect on beneficial insect species. Eforia was another effective insecticide in our study. The results of Duchovskiené (2016) indicated that eforia was a suitable insecticide to reduce abundance of the most harmful lepidopteran pests in white cabbages.

Mixture of emamectin benzoate with acetamiprid showed synergistic effects against 4th-instar of *T. absoluta*. Mahmoud et al. (2013) noted that emamectin benzoate combined with either imidacloprid, indoxacarb, profenofos, chlorfenapyr or methomyl caused a considerable population reduction in 3rd-instar of *T. absoluta*. Mahmoud et al. (2014) demonstrated that chlorantraniliprole insecticide was the most toxic against *T. absoluta* followed by 20% emamectin benzoate + 60% bifenthrin and lambda-cyhalothrin. In our study, the mixture of hexaflumuron with emamectin benzoate showed antagonistic interactions. It can be suggested that emamectin benzoate caused cessation of feeding in larvae, so hexaflumuron could not enter larval body through the digestive tract resulting in antagonistic interaction. Metayi et al. (2015) reported that all mixtures of emamectin benzoate (at LC$_{10}$ or LC$_{25}$) with novaluron or diflubenzuron (at LC$_{10}$ or LC$_{25}$) resulted in antagonistic effects.

The emamectin benzoate can influence the arthropods’ nervous system by incrementing chloride ion flux at the neuromuscular junction leading to termination of irreversible paralysis and feeding (Ishaaya, 2001). Neonicotinoids such as acetamiprid can interact with nicotinic acetylcholine receptors and disturb the nervous system of the insect resulting in the insects’ death (Belzunce et al., 2012). Accordingly, the mixtures of these insecticides with various modes of action supplement the action of one another for control of *T. absoluta*. Also, Corbett (1974) has a general theory to explain the synergistic interactions among insecticides. According to his theory, one toxicant in the mixture synergizes the toxicity of the other one by participating in its metabolic detoxification. Moreover, in our study, when the mixture of emamectin benzoate with other insecticides was applied, they might bind to detoxifying enzymes and then prevent the binding and subsequent degradation of emamectin benzoate by these enzymes, thereby enhancing the toxicity of this insecticide. Formerly, it had been supposed that OPs in mixture with pyrethroids inhibit the detoxifying enzymes such as monoxygenases and esterases in different insect pests (Bryne and Devonshire, 1991; Martin et al., 2003).

The results regarding esterase enzyme activity and protein content of 4th-instar larvae, support the observed toxicity ratios of the mixtures. Esterases, as important detoxifying enzymes, hydrolyze the esteric bond in synthetic chemicals (Hemingway and Karunatne, 1998). In the present study, the activity of α-esterase increased when larvae were treated with a mixture of emamectin benzoate with either acetamiprid or eforia. This shows that α-esterase enzyme has an important role in detoxification of these mixtures, suggesting a high toxicity of the mixtures of tested insecticides to *T. absoluta*. In the study of Zhu et al. (2017), acephate-only treatment reduced esterase activity by 40%, and
the mixture of imidacloprid+ acephate suppressed esterase activity by 45% in *Apis mellifera* L. (Hymenoptera: Apidae). Probably, in our study, mixtures have the ability to suppress the activity of other detoxification enzymes such as GST and MFOs. The biochemical analysis of GST and arboxylesterase by Badawy et al. (2015) indicated the detoxification of the low doses of pymetrozine and acetamiprid in *A. mellifera* by these enzymes. According to Abdel-Mageed and Shalaby (2011), thiamethoxam + lambda-cyhalothrin (Engeo) resulted in a considerable increment in acetylcholinesterase activity of *S. littoralis*. The role of esterases in detoxification of abamectin and resistance of Brazilian populations of *T. absoluta* against this insecticide is demonstrated by Siqueira et al. (2001). Zibaei et al. (2016) indicated that exposing 4th-instar of *T. absoluta* to chlorpyrifos increased the activity of esterases after 24 and 48 hrs. Esterases and MFOs are the enzymes responsible for reduced toxicity of spinosad to *T. absoluta* (Reyes et al., 2012).

In this study, the amount of total protein of larvae decreased by mixture of emamectin benzoate with either acetamiprid, eflorin or hexaflumuron, suggesting that these mixtures have high toxicity against *T. absoluta* (although the mixture of hexaflumuron with emamectin benzoate showed an antagonism interaction). This might be caused by the degradation of proteins into amino acids, that with the entry of these amino acids to TCA cycle, they will aid store energy for the insect (Nath et al., 1997). Furthermore, Nath et al. (1997) noted that sublethal concentrations of ethion and fenithrothion resulted in depleting the protein content of 5th-instar of *Bombyx mori* (L.) (Lepidoptera: Bombycidae) achieved by an increase in free amino acids. The reduction in protein content induced by emamectin benzoate + hexaflumuron in our study was similar to the finding of Assar et al. (2016), who stated that total protein and lipid contents of *S. littoralis* larvae were decreased by emamectin, hexaflumuron and teflubenzuron. Wilde et al. (2016) reported that the level of protein in tissue extracts of *A. mellifera* was significantly reduced from the 1st to the 2nd-instar treated with imidacloprid. According to Manal and Abdel-Mageed (2018), the total protein content of *M. domestica* adults treated with tested mixtures such as deltamethrin + abamectin, lambada-cyhalothrin + khaya extract, indoxacarb + pomegranate, chlorantraniliprole + jojoba oil and methomyl + jojoba oil was reduced compared with control.

Several studies showed that populations of *T. absoluta* might have multiple insecticide resistance (Siqueira et al., 2000; Siqueira et al., 2001; Guedes and Siqueira, 2012). Pesticide mixtures with various modes of action might postpone the resistance development of pest species. Moreover, the expenses of excessive use of insecticides and the risks of environmental pollution could be decreased. Therefore, it is possible to use it as a component of integrated pest management programs in case of synergistic and additive interactions. According to the results of this work, the mixtures of emamectin benzoate with eflorin and acetamiprid are good options for managing *T. absoluta*.

Acknowledgments

The University of Mohaghegh Ardabili (Ardabil, Iran) has financially supported this study, which is appreciated.

References

of some new insecticide mixtures on cotton leafworm *Spodoptera littoralis* (Boisd.). Plant Protection Science, 47(4): 166-175.

Koppenhofer, A. M. and Kaya, H. K. 1996. Additive and synergistic interaction between entomopathogenic nematodes and *Bacillus thuringiensis* for scarab grub control. Biological Control, 8: 131-137.

Reyes, M., Rocha, K., Alarcón, L., Siegwart, M. and Sauphanor, B. 2012. Metabolic mechanisms involved in the resistance of field populations of *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae) to spinosad.

707
Pesticide Biochemistry and Physiology, 102: 45-50.

تأثیر اختلاط امامکتین بنزوات با برخی حشره‌کش‌ها روی مربوط‌بهره و فعالیت آزمی‌بست‌از تر

{

}\textit{Tuta absoluta} (Lepidoptera: Gelechiidae)

لاروهاي سن چهارم مینوز یک گوجه‌فرنگی

محسن طلوع، هوشگرفی دستجردی، بهرام ناصری، عزیز شیخی‌گلچر و خلیل طالبپرشه

1- گروه‌گیاهپزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران.
2- مؤسسه تحقیقات گیاهپزشکی کشور، تهران، ایران.
3- گروه گیاهپزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

پست الکترونیکی تیم‌بندی: Hooshangrafiee@gmail.com

درافش: ۱۳۹۸/۰۴/۲۵، پذیرش: ۸/۱۳۹۹

\textit{Tuta absoluta} Meyrick (Lepidoptera: Gelechiidae)

چکیده: مینوز یک گوجه‌فرنگی از منجی‌های آفت‌های مهم‌المناسبت در جهان و ایران به‌شمار می‌رود. در این برسی، سرطان حشره‌کش‌های استان‌بریند فیومورون و تیزمورون را به‌عنوان شدت و قدرت بالاتری و فعالیت‌هایی که در شرایط‌های حساسی و ترکیب با امامکتین بنزوات علیه لاروهاي سن چهارم این آفت در شرایط ارماشگاهی (دماي ۲٥±۲ درجه سانتی‌گراد و رطوبت نسبی ۵۰ درصد و دوره نوری ۸/۱۶ ساعت) تعیین شد. لیست‌پذیریLC15: LC50 در شرایط آزمایشی و در ایستادگی حشره‌کش‌های مورد بررسی با امامکتین بنزوات با نسبت 1:۲۵، نقطه‌ی اصلی تحقیق در این پژوهش حاصل شد. مزایای مصرفی امامکتین بنزوات (۵۰/۰٪) سه‌شنبه پاس از ۲۷ ساعت برای امامکتین بنزوات (۵۰/۰٪) میلی‌گرم ماده مؤثر بر لیتر) به‌دست آمد. بعد از آن استامی (۲۵/۰٪) میلی‌گرم ماده مؤثر بر لیتر) اسکوپور (۱۰/۰٪) میلی‌گرم ماده مؤثر بر لیتر) و هگلفاتومورون (۲۵/۰٪) میلی‌گرم مواد نهاییLC50 = ۱/۶۳۴/۰ میلی‌گرم ماده و LC50 = ۶/۷۰ میلی‌گرم مواد و LC50 = ۱۵/۶۳۴/۰ میلی‌گرم مواد و LC25 = ۵/۸۰ میلی‌گرم مواد نهاییLC50 = ۱/۶۳۴/۰ در این خصوص، امامکتین بنزوات با استماپورین و اسکوپور هم نسبت‌ی LC25 بیشتری از آن انتاگونیستی و تجمعی نشان داد. اختلاط امامکتین بنزوات با استماپورین و اسکوپور باعث افزایش فعالیت‌بست‌از تر شد. اما بین اختلاط امامکتین بنزوات با هگلفاتومورون و تیزمورون امامکتین بنزوات تفاوت معنی‌داری وجود نداشت. اختلاط امامکتین بنزوات با حشره‌کش‌های مورد بررسی محتمال برای بیماران ممنوعین کالسک Export, ایران

واژگان کلیدی: اختلاط، امامکتین بنزوات، استماپورین، اسکوپور، مواد نهایی گوجه‌فرنگی

709