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Abstract: For successful implementation of integrated pest management 

(IPM) programs, having knowledge on lethal and low-lethal effects of 

pesticides on natural enemies is necessary. The present study evaluated the 

low-lethal effect of thiamethoxam on life table parameters of the subsequent 

generation of the predatory mite, Neoseiulus californicus McGregor (Acari: 

Phytoseiidae) fed on Tetranychus urticae Koch under laboratory conditions. 

The low-lethal concentrations LC5, LC10 and LC20 were determined based on 

a dose-effect assay. The raw data were analyzed based on age-stage two sex 

life table analysis. Exposure to the low-lethal concentrations of 

thiamethoxam had no significant effects on developmental time of offspring 

of treated mites. Compared with control treatment, the oviposition period of 

treated mites with LC5, LC10 and LC20 decreased significantly. The highest 

and lowest values of total fecundity were obtained at control (35.3 

eggs/female/day) and LC20 (23.6 eggs /female/day), respectively. The net 

reproductive rate (R0) decreased with increasing dose from LC5 (22.6 

offspring) to LC20 (15.0 offspring). The intrinsic rate of increase (r) and 

finite rate of increase (λ), were not affected by increasing concentrations. 

The mean generation time (T) decreased significantly at upper dose (LC20 = 

13.2 d), compared with control (14.7 d). In consequence, the low-lethal 

concentration influences of thiamethoxam in combination with N. 

californicus in order to design management programs of T. urticae are 

discussed.  
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Introduction12 

 

The two-spotted spider mite Tetranychus 

urticae Koch (Acari: Tetranychidae), is one 

of the most important pests found in 
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ornamental, agricultural and horticultural 

crops such as cucumber, bean, eggplant, 

soybean (Sedaratian et al., 2011; Khanamani 

et al., 2013; Maleknia et al., 2016). Plant 

photosynthesis is prevented by feeding of this 

pest from sap, also producing silk webbing 

(Huffaker et al., 1969; Nachman and Zemek, 

2003). Great efforts are being made every 

year to cope with this pest (Watson, 1964; 

Aydemir and Toros, 1990). Chemical control 

 [
 D

O
R

: 2
0.

10
01

.1
.2

25
19

04
1.

20
20

.9
.1

.9
.6

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 jc

p.
m

od
ar

es
.a

c.
ir

 o
n 

20
25

-0
5-

17
 ]

 

                             1 / 15

mailto:kkheradmand@ut.ac.ir
https://dorl.net/dor/20.1001.1.22519041.2020.9.1.9.6
https://jcp.modares.ac.ir/article-3-32441-en.html


Influence of thiamethoxam on N. californicus _________________________________________ J. Crop Prot.  

42 

is the primary strategy for IPM programs due 

to its, cost-effectiveness, rapidity and ease of 

use (Zhao, 2000).  

A single chemical control method against 

pests cannot in itself be successful (Kaplan et 

al., 2012), but knowledge of the effects of 

pesticides on biological control agents is 

necessary for successful implementation of 

integrated pest management (IPM) programs 

(Hamedi et al., 2010). Spider mites are 

difficult to control with miticides (Naher et 

al., 2005) as a result of inaccessibility to 

lower leaf surface, short lifespan, high 

reproductive capacity (Cranham and Helle, 

1985), which can lead to rapid population 

growth (Nauen et al., 2001). Biological 

control using natural enemies is an alternative 

method to chemical control of these pests in 

agricultural systems (Lewis et al., 1997; 

Barbosa, 1998).  

Phytoseiid predators are effective natural 

enemies of spider mites (McMurtry et al., 

2013). The predator mite, Neoseuilus 

californicus McGregor (Acari: Phytoseiidae) is 

a successful species in the control of mites in 

fields and greenhouses and feeds on 

Tetranychidae and Tarsonemidae (Castagnoli 

and Simoni, 1999). This species of 

phytoseiid, can also feed and reproduce on 

small arthropod prey or pollen (Khanamani et 

al., 2017).  

Neoseiulus californicus prefers to prey on 

spider mites, however, it also has the ability 

to prey on other tetranychid species, as well 

as on other pest mites (Swirski et al., 1970; 

McMurtry et al., 2013). Numerous studies 

have shown that the predatory mites by 

themselves cannot maintain the population 

of spider mites under the economic injury 

level , although their effectiveness as 

predatory mites for biological control of T. 

urticae has been proven (Helle and Sabelis, 

1985; Greco et al., 1999, 2005; Alzoubi and 

Cobanoglu, 2007). 

Integration of biological and chemical 

control is the fundamental tenet and this 

integration include reducing pesticide use, 

application of selective pesticides, and 

modifying natural enemies to reduce their 

susceptibility to pesticides (Newsom et al., 

1976; Croft, 1990; Greathead, 1995; Biondi et 

al., 2012; Roubus et al., 2014). However, it is 

important to reduce the usage of pesticides and 

select products which have low negative impact 

on biological control agents )Isman, 2000; 

Hassan and Van De Veire, 2004). Therefore, 

the combination of using suitable insecticides, 

along with biological control agents has been 

widely recommended as an important part of 

IPM strategies (Elzen, 2001).  

Studies that only consider the lethal 

effects may underestimate the negative 

effects of pesticides on natural enemies 

(Galvan et al., 2005) and chemicals with 

minimal toxicity to natural enemies have been 

applied in integrated pest management 

programs (Croft, 1990). Demographic 

toxicology has been considered as a better 

measure of response to toxicants than 

individual life history traits (Forbes and 

Calow, 1999). By using ‘population growth 

rate’, it is possible to more accurately 

measure the toxicity of pesticides on useful 

organisms (Kim et al., 2004). Neonicotinoids 

are presently well-known for their non-target 

effects on predatory mites and capability to 

cause spider mite flare-ups in diverse 

ecosystems (Raupp et al., 2004; Beers et al., 

2005; Szczepaniec et al., 2011; Beers and 

Schmidt, 2014; Duso et al., 2014 et al). At 

the same time, these insecticides are 

chemically similar to nicotine, thus they act 

antagonistically to insect nicotine 

acetylcholine receptors (Nauen et al., 2003), 

although they reduce the impacts of insect 

pests, they can also affect the population 

levels and dynamics of biological-control 

agents in agro-ecosystems (Desneux et al., 

2007; Biondi et al., 2012; Guedes et al., 

2016). 

Thiamethoxam, IUPAC name 3-(2-Chloro-

thiazol-5-ylmethyl)-5-methyl-(1, 3, 5) oxadiazinan-

4-yldene-N-nitroamine, is a second generation 

neonicotinoid possessing stomach and contact 

activity, nervous system and inhibits feeding reflex 

(Maienfisch et al., 2001; Torres et al., 2003). This 
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insecticide is presently one of the most effective 

chemicals for the control of sucking pests (Sharma 

and Lal, 2002). It is commercially available with 

the common name Actara® (WG25%). Many 

studies have investigated the lethal and low-lethal 

effects of pesticides on phytoseiid mites 

(Çobanoğlu and Alzoubi, 2008; Hamedi et al., 

2009; Lima et al., 2013; Alinejad et al., 2014, 

2016). However, there are few studies about the 

low-lethal effects of this insecticide on predatory 

arthropods such as N. californicus (Poletti et al., 

2007). Due to the importance of the predator N. 

californicus for integrated pest-management 

programs (IPM), and the overuse of neonicotinoid 

insecticides for the control of insect pests, studies to 

assess the impacts of insecticides on biological and 

population parameters of this mite are essential to 

support IPM programs. 

Therefore, the present study aimed to 

understand the low-lethal concentrations of 

thiamethoxam on pre-imaginal developmental 

period, adult longevity, fecundity and 

demographic parameters of N. californicus, 

using the age-stage, two-sex life table to predict 

this neonicotinoid insecticide potential in 

combination with one of the effective natural 

enemies of T. urticae. 

 

Materials and Methods 

 

Biological material 

The initial stock of N. californicus (Spical®) 

was provided from the Giah Bazr Alvand 

Company, an agent of the Koppert Company 

(Tehran, Iran) and reared in the laboratory on 

kidney bean Phaseoulus vulgaris L. plants 

infested with T. urticae. The two-spotted spider 

mites were obtained from infested plants in 

Pakdasht (South Eastern part of Tehran) and 

were released on the kidney bean plants under 

greenhouse conditions of 25 ± 2 °C, 60 ± 5% 

RH and a photoperiod of 16:8 (L: D) hr. The 

predator rearing arenas were made according to 

McMurtary and Scriven (1965) method and 

were stored in a growth chamber at 25 ± 2 °C 

65 ± 5% RH, and16: 8 (L: D) hr. Bean leaves 

infested with T. urticae were added daily to 

each arena as food source. 

Insecticide solutions 

A thiamethoxam-based commercial product, 

Actara® 25WG (Syngenta Crop Protection), 

was diluted with distilled water. In toxicity 

bioassays, the highest tested dose was specified 

based on the recommended field concentration, 

12.5-50 g AI Ha−1, and other five reduced 

concentrations (1500, 1660, 1800, 1990, and 

2200 µg a.i./ml) were chosen to emulate lower 

concentrations. 

 

Concentration-response bioassay  

A modified leaf dip method (Helle and 

Overmeer, 1985) was used to determine the 

response of N. californicus adults to different 

concentrations of thiamethoxam (the 

mortality covering the range of 10-90%. 

Fresh leaf discs of bean (4 cm diameter) were 

dipped for 15 s into thiamethoxam solutions, 

and then were dried for 3 hour at room 

conditions. Control leaf discs were dipped in 

distilled water only. In the next stage, 20 

same-aged (24 h-old) adult predatory mites 

(male and female) were placed on the treated 

leaf discs for each concentration (LC5, LC10 

and LC20) using a soft pointed brush. Mite 

mortality was assessed after 24 h. The low-

lethal concentrations including LC5, LC10, 

and LC20 were determined using a probit 

procedure (IBM SPSS, Version 19.0). Each 

concentration was replicated four times. All 

experiments were conducted in the laboratory 

at 25 ± 2 C, 65 ± 5% RH and a photoperiod 

of 16: 8 (L: D) hour. 

The T. urticae population, were maintained 

in greenhouse conditions at 25 ± 2 °C, 60 ± 5% 

RH, and a photoperiod of 16:8 (L: D) h. 

 

Life-Table Assay 

In order to evaluate thelow-lethal effects of 

thiamethoxam on N. californicus, after 

treatment (modified leaf dip method; Helle 

and Overmeer, 1985) of bean leaf discs with 

low-lethal concentrations (including LC5, 

LC10 and LC20), and distilled water, allowed 

to dry for 3 h. Then forty-five same-aged 

females (24 h-old) were transferred on the 

treated and untreated leaf discs of bean. After 
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24 h, surviving females were separately 

moved onto the untreated leaf discs (3 cm in 

diameter). After 24 h, one laid egg was saved 

in each experimental arena (45 replications 

for each concentration). In the next 

procedure, all saved eggs were checked daily 

and the development time, longevity, 

oviposition period and fecundity rate until 

death of the last mite, was recorded. In order 

to study the fecundity and reproduction 

parameters, females were coupled with males 

that were selected from the stock colony in 

the Petri-dishes. To provide an ample food 

supply in treatments, 4-6 prey larva and 

nymph (4-5 times per day) were added as a 

food source for the immature and adult stages 

of this predatory mite, respectively. All Petri 

dishes were checked daily and the 

information of adult mites such as survival, 

reproductive durations, adult longevity, 

fecundity, along with population growth 

parameters were recorded. 

 

Statistical analysis 

The population growth parameters (net 

reproductive rate [R0], intrinsic rate of 

natural increase [r], finite rate of increase 

[λ], and mean generation time [T]) 

(Fathipour and Maleknia, 2016), also the 

age-stage specific survival rate (sxj) (where x 

= age in days and j = stage); the age-specific 

survival rate (lx); the age specific fecundity 

(mx); age-stage fecundity of female (fxj) of N. 

californicus were calculated with age stage, 

two-sex life table (Chi and Liu, 1985; Chi, 

1988) using the computer program of TWO-

SEX_Ms Chart program (Chi, 2016). 

Comparisons of statistical differences among 

means of parameters related to development, 

as well as fecundity with the Tukey-Kramer 

procedure was carried out using SAS (SAS 

Institute, 2002). The means of the latter 

parameters in population growth parameters 

between different treatments were compared 

using paired bootstrap test (Riahi et al., 

2017; Khanamani et al., 2017).  

 

Results 

 

Concentration-response bioassay 

The regression equation of concentration-

mortality was Y = -1.52 + 2.03X [Y = mortality 

(probit), X = concentration (µg/ml)]. As shown 

in Table 1, the estimated LC50 for the predatory 

mite was 1822 µg a.i./ml while no mortality 

was recorded for the control (Table 1). In 

addition, the values of LC5, LC10, and LC20 

were 1449, 1525 and 1622 µg a.i./ml, 

respectively. 

 

Development time, longevity and total life span 

Effects of different concentrations of 

thiamethoxam on development time of male 

and female N. californicus are shown in Table 

2. The time required for N. californicus eggs 

to hatch was 1.18 and 1.24 days for the 

untreated males and females, respectively (F 

= 0.1; df = 3, 36; P = 0.96 for male, F = 0.13; 

df = 3, 112; P = 0.94 for female). The number 

of days to complete larval stage in male and 

female were not significantly affected by 

low-lethal concentrations (male: F = 0.41; df 

= 3, 36; P = 0.74, Female: F = 0.69; df = 3, 

112; P < 0.56). Protonymphal (male: F = 

0.45; df = 3, 36; P = 0.71, Female: F = 0.23; 

df = 3, 112; P = 0.87) and deutonymph (male: 

F = 0.1; df = 3, 36; P = 0.95, Female: F = 

0.01; df = 3, 112; P = 0.99) stage duration of 

males and females were not significantly 

different among the treatments. Longevity (F 

= 907.3; df = 3, 112; P < 0.0001) and total 

life span (F = 261.3; df = 3, 112; P < 0.0001) 

of treated females was significantly different 

from the control. Low-lethal concentrations 

(LC5, LC10 and LC20) significantly reduced 

longevity and total lifespan of both sexes 

compared to control treatment. The longest 

and the lowest female adult longevity 

(longest: 27.28 d for control; lowest: 19.07 d 

for LC20), as well as total life span (longest: 

32.10 d for control; lowest: 24.07 d for LC20) 

were observed in control and LC20 treatment, 

respectively (Table 2). 
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Table 1 Probit analysis for the concentration–mortality response of thiamethoxam on adult females and males of 

Neoseiulus californicus. 
 

Probit values LC5 LC10 LC20 LC50 LC90 Slope ± SE df  x2 P n 

LC value 1449 1525 1622 1822 2190   2.06 ± 0.35 4 1.67  0.64 480 

95% upper limits 1505 1575 1664 1865 2290     

95% lower limits 1374 1460 1570 1790 2119     

20 individuals per replicate, four replicates per concentration, six concentrations per assay. 

 
Table 2 Mean (± SE) female and male development time of Neoseiulus californicusfor control and different 

concentrations of thiamethoxam. 
 

Parameter Control LC5 LC10 LC20 

Male     

Egg duration (day)   1.18 ± 0.12a   1.20 ± 0.13a   1.25 ± 0.16 a   1.27 ± 0.14a 

Larva duration (day)   1.09 ± 0.09a   1.10 ± 0.10a   1.12 ± 0.12a   1.00 ± 0.00a 

Protonymph (day)   1.17 ± 0.12a   1.40 ± 0.16a   1.37 ± 0.18 a   1.37 ± 0.15a 

Deutonymph (day)   1.27 ± 0.14a   1.30 ± 0.15a   1.39 ± 0.17a   1.37 ± 0.16a 

Male longevity (day) 20.27 ± 0.45a 19.00 ± 0.47a 15.88 ± 0.55b 14.64 ± 0.43c 

Total life span (day) 25.00 ± 0.49a 24.00 ± 0.49a 21.00 ± 0.76b 19.64 ± 0.45c 

Female     

Egg duration (day)   1.24 ± 0.08a   1.24 ± 0.08a   1.30 ± 0.09a   1.30 ± 0.09a 

Larva duration (day)   1.03 ± 0.03a   1.07 ± 0.05a   1.13 ± 0.06a   1.07 ± 0.05a 

Protonymph (day)   1.23 ± 0.08a   1.24 ± 0.08a   1.29 ± 0.09a   1.32 ± 0.09a 

Deutonymph (day)   1.31 ± 0.09a   1.31 ± 0.09a   1.30 ± 0.12a   1.32 ± 0.11a 

Female longevity (day) 27.28 ± 0.11a 26.07 ± 0.13b 22.70 ± 0.13c 19.07 ± 0.11d 

Total lifespan (day) 32.10 ± 0.18a 30.93 ± 0.25b 27.73 ± 0.25c 24.07 ± 0.19d 

Means followed by the same letters in the same row are not significantly different (Tukey-kramer, P ≤ 0.05). 

 

Reproduction 

Reproductive periods and total fecundity of 

offspring of the treated females is shown in 

Table 3. There was no significant effect on 

adult pre-oviposition period (APOP) (F = 1.94, 

P = 0.12, df = 3, 112) as well as total pre-

oviposition period (TPOP) (F = 0.77, P = 0.51, 

df = 3, 112) of N. californicus associated with 

thiamethoxam (Table 3).The mean total 

fecundity for LC5 was 34.38 

offspring/individual and was closer to control 

(35.31 offspring/individual) while LC20 was 

significantly lower (23.61 offspring/individual) 

(F = 159.86, P < 0.0001, df = 3,112) than the 

other treatments. The treatment with different 

concentration of thiamethoxam demonstrated a 

significant change in the oviposition period, 

compared with the control treatment, such that 

there was a variation from 13.57 (LC20) to 

21.86 (for control) days in higher concentration 

and un-treated mites (F = 1291.2, P < 0.0001, 

df = 3, 112) (Table 3). 

 

Population growth parameters 

The life-table parameters of offspring of treated 

females are shown in Table 4. The gross 
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reproduction rate (GRR) varied from 17.64 (for 

LC20) to 27.18 (for control) offspring/individual 

(Table 4). The lowest value of GRR as well as 

R0 (net reproductive rate) was obtained for the 

mites exposed to the LC20 treatment. The 

intrinsic rate of increase (r) and finite rate of 

increase (λ) were not significant. The mean 

generation time was longest in control (14.74 

d); followed by LC10 (13.95 d) and LC20 (13.28 

d) treatments (Table 4). 
 
Survival and Fecundity 

Age-specific survivorship (lx), age-specific 

fecundity (mx), and age-stage fecundity of 

female (fxj) N. californicus at different 

concentrations of thiamethoxam are shown in 

Figure 1. Total lifetime for the untreated mites 

was 35 days, 33, 31 and 26 days for LC5, LC10 

and LC20 treatments, respectively (Fig. 1). In 

addition, the maximum values of mx were 

approximately 1.61 eggs/female/day for mites 

treated with LC5 treatment, which was on day 

25 of the lifespan (Fig. 1). Maximum value of 

mx for untreated mites, was 1.42 

eggs/female/day that was observed on day 24 of 

life span. However, maximum values of mx for 

LC10 and LC20 treatments were approximately 

1.60 and 1.38 eggs/female/day respectively, 

which occurred on days 21 and 14 (Fig. 1). The 

age-stage specific survival rates (sxj) of N. 

californicus in treatments are plotted in Figure 

2. Overlap between different stages of 

developmental periods, was observed among 

the individuals (A-D) (Fig. 2). 

 
Table 1 Mean (± SE) reproductive period and total fecundity of offspring from females of Neoseiulus 

californicus treated with low-lethal concentrations of thiamethoxam and distilled water (CK). 
 

Parameter Control LC5 LC10 LC20 

Oviposition period (day) 21.86 ± 0.08a 20.66 ± 0.09b 17.42 ± 0.11c 13.57 ± 0.12 d 

APOP (day)1    2.28 ± 0.08a   2.28 ± 0.08a   2.23 ± 0.07a   2.52 ± 0.12a 

TPOP (day)2   7.12 ± 0.17a   7.14 ± 0.21a   7.27 ± 0.22a   7.51 ± 0.23a 

Total fecundity (offspring/individual) 35.31 ± 0.37a 34.38 ± 0.43a 29.62 ± 0.49b 23.61 ± 0.38c 

Means followed by the same letters in the same row are not significantly different (Tukey-Kramer, P ≤ 0.05).  
1 APOP: Adult pre-oviposition period, 2 TPOP: Total pre-oviposition period. 

 
Table 2 Life table parameters (mean ± SE) of Neoseiulus californicus at different concentrations of thiamethoxam 
and control treatment. 
 

Parameters Control LC5 LC10 LC20 

r (day-1)   0.2116 ± 0.010a   0.2136 ± 0.009a   0.2166 ± 0.009a   0.2036 ± 0.010a 

λ (day-1)   1.2357 ± 0.012a   1.2382 ± 0.012a   1.2419 ± 0.011a   1.2259 ± 0.012a 

R0 (offspring/individual) 22.7400 ± 2.527a 22.6500 ± 2.468a 20.6500 ± 2.101a 15.0200 ± 1.719b 

GRR (offspring/individual) 27.1800 ± 2.162a 27.1100 ± 2.016a 24.7900 ± 1.676a 17.6400 ± 1.593b 

T* (day) 14.7400 ± 0.258a 14.5800 ± 0.273a 13.9500 ± 0.265a 13.2800 ± 0.213b 

The SE were estimated by using 100,000 bootstraps. The means followed by the same letter in each row are not significantly different using 

paired bootstraps test at the 5% significance level. 

Abbreviations: r: intrinsic rate of increase; λ: finite rate of increase; R0: net reproductive rate; GRR: Gross reproductive rate; T: mean 

generation time.  

 

 

 [
 D

O
R

: 2
0.

10
01

.1
.2

25
19

04
1.

20
20

.9
.1

.9
.6

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 jc

p.
m

od
ar

es
.a

c.
ir

 o
n 

20
25

-0
5-

17
 ]

 

                             6 / 15

https://dorl.net/dor/20.1001.1.22519041.2020.9.1.9.6
https://jcp.modares.ac.ir/article-3-32441-en.html


Havasi et al. _______________________________________________________ J. Crop Prot. (2020) Vol. 9 (1) 

47 

 

 

 

 
  

Figure 1 Age-specific survivorship (lx), age-stage fecundity of female (fxj), and age-specific fecundity (mx) of 

Neoseiulus californicus for control and different concentrations of thiamethoxam: (a) Control, (b) LC5, (c) LC10, 

(d) LC20. 
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Figure 2 Age-stage-specific survival rate (sxj) of Neoseiulus californicus for control and different concentrations 

of thiamethoxam: (a) Control, (b) LC5, (c) LC10, (d) LC20. 

 

Discussion 

 

IPM program betterments need a comprehension 

of how pesticides/insecticides impress natural 

enemies of the pests that are being targeted. 

Insecticides may influence insects directly and/or 

via exposure to low-lethal concentrations 

(Guedes et al., 2016). Various studies have been 

conducted on the effects of various pesticides on 

biological parameters of two-spotted spider mite 

and predatory mites (Nadimi et al., 2009; 

Alinejad et al., 2015; Ganjisaffar and Perring, 

2017; Havasi et al., 2018). However, no 

evidence is available with regard to low-lethal 

concentration (LC5, LC10 and LC20) of 

thiamethoxam on biological parameters of N. 

californicus. Determining the effects of 

pesticides on natural enemies can be useful in 

appropriate selection of these compounds for 

integrated pest management programs 

(Golmohammadi and Hejazi, 2014). 

According to our results, thiamethoxam 

treatment had no significant effect on 

developmental time of different immature 

stages (egg, larvae, protonymph and 

deutonymph) of N. californicus, which is in 

accordance with Villanueva and Walgenbach 

(2005) who concluded that low-lethal doses of 

acetamiprid (115 ppm), thiamethoxam (37 

ppm) and imidacloprid (60 ppm) had no 

significant effects on pre-adult duration of N. 

fallacis Garman. In our study, longevity and 
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total lifespan were declined for both sexes of 

the N. californicus after treatment with two 

sublethal (LC10 and LC20) concentrations of 

thiamethoxam (Table. 2), which is consistent 

with results provided by Döker et al. (2015) 

that showed a similar trend for immature 

survival and high mortality in Iphiseius 

degenerans Berlese (Acari: Phytoseiidae) after 

exposure to acetamiprid and thiamethoxam. 

Other studies have also confirmed the adverse 

effect of imidacloprid and/or thiamethoxam on 

G. occidentalis (Bostanian et al. 2009), N. 

fallacis (Bostanian et al., 2010) and I. 

degenerans (Döker et al., 2015), respectively. 

It was especially noteworthy that the 

oviposition period and fecundity of N. 

californicus were affected by experimental 

treatments (LC10 and LC20) which corroborates 

the results reported for another neonicotinoid 

insecticide, namely acetamiprid, which lowered 

drastically the fecundity of female 

Galendromus occidentalis (Nesbitt) by > 75% 

and Amblyseius swirskii Athias-Henriot (Beers 

and Schmidt, 2014; Fytrou et al., 2017). To the 

contrary, the fecundity of whitefly parasitoid 

Encarsia inaron (Walker) treated with low-

lethal (62.5 and 23.37 ppm) concentration of 

imidacloprid, had a higher fecundity compared 

to a control treatment (Sohrabi et al., 2012). 

In our opinion, this discrepancy between the 

results presumably occurred due to different 

examined concentrations of pesticide and the 

species differences in physiological responses 

to the insecticides. 

Based on the obtained results, neither the 

pre-oviposition nor total pre-oviposition period 

showed significant variation. Our result was not 

in agreement with Xiao et al. (2016) who 

illustrated an increase trend for the pre-

oviposition period of seven-spotted ladybird 

beetle, Coccinella septempunctata L., when 

treated by 0.484 and 4.837 mg l–1 of 

imidacloprid. 

Life history parameters were affected by the 

low-lethal concentrations of thiamethoxam in 

some cases and in some others they were not, 

and that is why demographic search is an 

invaluable method of chemical toxicity against 

arthropods since such studies provide further 

understanding of the effect of the pesticide on 

insect (Stark and Banks, 2003). 

In our study, the value obtained for gross 

reproductive rate (GRR) in the control treatment 

(27.18 offspring/individual), was similar to the 

value found by Khanamani et al. (2017) (27.69 

offspring/individual) for N. californicus. There 

was a significant decrease in net reproduction 

rate (R0), gross reproductive rate (GRR) and 

mean generation time (T) parameters in higher 

concentration (LC20) of thiamethoxam. Our data 

is supported by those of Rahmani (2016) and 

Rahmani and Bandani (2013) who concluded 

that thiamethoxam treatment (LC30), caused 

significant decrease inR0 of important predator, 

Macrolophus pygmaeusRambur (Hemiptera: 

Miridae) and aphid predator, Hippodamia 

variegata Goeze (Coleoptera: Coccinellidae). 

No significant differences was reported for 

intrinsic rate of increase (r) and finite rate of 

increase (λ) of N. californicus exposed to 

different concentrations of thiamethoxam, 

which agrees with the findings of Zarandi et al. 

(2017) for Iphiseiodes zuluagai (Denmark and 

Muma) treated with imidacloprid and 

thiamethoxam. 

The adult survival and age-specific fecundity 

curves demonstrated that sublethal 

concentrations of thiamethoxam caused 

reduction in survival and fecundity of offspring 

compared with the control. The reduced values 

for survival and fecundity have been reported in 

previous studies for P. persimilis and N. fallacis, 

when treated with thiamethoxam (Bostanian et 

al. 2010; Pozzebon et al. 2011). Similar to the 

results obtained by our work, in laboratory tests 

Stavrinides and Mills (2009) found that the 

survival rate of Galendromus occidentalis 

(Nesbitt) treated by imidacloprid (56.25mg/l of 

active ingredient), had a decreasing trend 

compared to control. These differences may be 

due to different predatory species.  

In this work, the parameter of Sxj varied after 

treating individuals with thiamethoxam. For 

example, according to the curve of the age-

stage specific survival rate (sxj), increasing 

lethal concentrations led to an increase in 
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mortality. Thus, relative numbers alive (sxj) 

were reduced by the LC10 followed by a 

considerable decrease in LC20 among both sexes 

male and female. 

To conclude, it seems that the pesticides can 

be considered as an economic, labor-saving, and 

effective tool of pest management (Damalas and 

Eleftherohorinos, 2011) but IPM programs are 

complex and variable, and there is more work to 

be conducted to exactly understand these control 

strategies (Ullah, 2017). In general, the less of 

the pesticide may be used in combination with N. 

californicus in an IPM program of T. urticae 

(Roush, 1989, Dent, 2000). 

Based on these results, we not only elucidated 

the low-lethal effects of thiamethoxam on the 

natural enemy N. californicus, but also 

contributed to better understanding of the 

interaction of this insecticide and N. californicus, 

and how natural enemies respond to 

environmental xenobiotic. Further behavioral 

and physiological studies are necessary to help 

identify in their field compatibility for two-

spotted spider mite management and in order to 

develop biological pest control programs.  
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 بیولوژیکی کشنده تیامتوکسام بر پارامترهایکمهای تأثیر غلظت
Neoseiulus californicus (Acari: Phytoseiidae) 

 

 3پوریعقوب فتحی و 2نژاد، هادی مصلی*1، کتایون خردمند1محمدرضا هواسی

 
 .ه تهران، تهران، ایرانگیاهی، پردیس ابوریحان، دانشگا هایشناسی و بیماریگروه حشره -1

 ، تهران، ایران.(AREEO) آموزش و ترویج نحقیقات کشاورزیسازمان  سسه تحقیقات حفاظت گیاهان ایران،ؤم -2

 .، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایرانکشاورزی شناسیگروه حشره -3

 kkheradmand@ut.ac.irمسئول مکاتبه:  نویسندگان الکترونیکی پست

 1398مهر  21؛ پذیرش: 1398اردیبهشت  9دریافت: 

 

، آگاهی در موورد ارورات   (IPM)آفات  های مدیریت تلفیقیمنظور اجرای موفقیت آمیز برنامهبه :چکیده

سوی ارور   پوووه  حاضور بوه برر    .باشود کشنده سموم بر دشمنان طبیعی امری ضروری میکشنده و کم

 Neoseiulus californiaicusکشنده تیامتوکسام بر پارامترهای جدول زندگی نسل بعدی کنه شکارگرزیر

McGregor (Acari: Phytoseiidae) ای کنه تارتن دولکوه  تغذیه شده ازTetranychus urticae Koch  در

ارور  سواس روش دز  برا 20LC و 5LC ،10LC کشونده هوای زیر غلظوت  پرداخته اسوت.  شرایط آزمایشگاهی

تجزیوه و   مرحلوه زیسوتی،  -سن جنسیجدول زندگی دواساس بر دست آمدهبه های خامداده. تعیین شد

مراحول  داری بور زموان   کشنده تیامتوکسام تأریر معنیزیر هایقرار گرفتن در معرض غلظت .تحلیل شد

بوا   تیموار شوده   هوای کنوه  ریزیتخمنداشت. در مقایسه با تیمار شاهد، دوره  تیمار شده هایکنه رشدی

ترین مقدار باروری کول  ترین و کمبی  .یافتتوجهی کاه  طور قابلبه  20LCو  5LC ،10LC هایغلظت

دست آمود. نور    هروز( ب/تخم/ماده 6/23) 20LCغلظت تخم/ماده/روز( و  3/35ترتیب در غلظت شاهد )به

  یافت. نور  ااتوی   ( کاهنتاج 0/15) 20LCنتاج( به  6/22) 5LC( با افزای  دز از 0Rتولیدمثل خالص )

 قورار نگرفوت.   بوا افوزای  غلظوت تحوت توأریر      (،λ) ( و نر  متناهی افزای  جمعیتrافزای  جمعیت )

در مقایسوه بوا تیموار شواهد      روز20LC (2/13) بوایی  ( در غلظوت Tیو  نسول )   زنودگی  متوسط طوول 

 زیرکشونده تیامتوکسوام در ترکیوب بوا     در نتیجه، تأریرات غلظوت  داری داشت.روز( کاه  معنی7/14)

مورد بحث قورار گرفتوه    ایکنه تارتن دولکه های مدیریتبرنامه منظور طراحیبه N. california شکارگر

 است.

 

 یت، جدول زندگی، سم50LC ،Tetranychus urticaeّ ،کنه شکارگر واژگان کلیدی:
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