Research Article

Suitability of different egg ages of *Ephestia kuehniella* (Lep.: Pyralidae) for the development, reproduction and life table parameters of *Trichogramma evanescens* (Hym.: Trichogrammatidae)

Fatemeh Tabebordbar\(^1\), Parviz Shishehbor\(^1\) and Ebrahim Ebrahimi\(^2\)

1. Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
2. Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.

Abstract: *Trichogramma evanescens* Westwood is an important biological control agent of lepidopteran pests and is widely distributed throughout Iran and neighboring countries. Laboratory studies were conducted to determine the influence of *Ephestia kuehniella* Zeller eggs age on the number of parasitized eggs, development time, sex ratio, progeny longevity and fecundity. Understanding this influence is important for developing biological control programs. Mated female parasitoids (24 h age) were provided with 1, 2, 3, and 4-days-old *E. kuehniella* eggs in no-choice experiments, individually. *T. evanescens* developed on *E. kuehniella* eggs of all ages tested, while showing a better adaptation to younger host eggs with significantly faster developmental time, higher survival and more female progeny on 1-day-old eggs. Progeny emerged from 1-day-old eggs had also higher longevity and fecundity than those emerging from other host ages tested. The intrinsic rate of increase (*r*) values of *T. evanescens* reared on 1, 2, 3 and 4-days-old *E. kuehniella* eggs were 0.345, 0.322, 0.281 and 0.233 day\(^{-1}\) and the mean generation time (*T*) was 12.19, 12.13, 12.01 and 11.82 days, respectively. The current study provides useful information to use suitable host age of *E. kuehniella* for mass production of *T. evanescens*.

Keywords: egg parasitoid, host age, development time, sex ratio, the intrinsic rate of increase, the mean generation time

Introduction

The egg parasitoids belonging to the genus *Trichogramma* (Hymenoptera, Trichogrammatidae) are important biological control agents extensively used against several lepidopterous pests. Augmentation of *Trichogramma* species is used in more than 32 million hectares of different agricultural systems for controlling various lepidopteran pests (Li, 1994; Smith, 1996). These parasitoids are commercially produced and used in China, Columbia, USA, various European countries and India (Wajnberg and Hassan, 1994). The augmentative release of Trichogrammatid parasitoids has reduced pest damage by 77-92% in some crops such as sugarcane, wheat, corn and cabbage in several countries including China, Switzerland, Canada and the former USSR (Li, 1994, Parra, 2010).

Parasitoids of the genus *Trichogramma* are important natural enemies in biological control
Suitability of E. kuehniella for T. evanescens

and widely distributed in Iran. Modarres Aval (2012) listed 14 species for Trichogramma genus from Iran. This parasitoid is mass produced and released against several lepidopteran pests including Chilo suppressalis Walker in rice, Helicoverpa armigera Hubner in cotton and tomato, Tuta absoluta (Meyrick) in tomato and Ectomyelois ceratoniae (Zeller) in pomegranate (Ahmadipour et al., 2015; Ebrahimi et al., 1998; Ebrahimi, 2004; Poorjavad et al., 2011).

Vinson (1976) stated that the age of the host is an important factor which has a considerable effect on the biological and physiological aspects of parasitoids. Pak (1986) demonstrated that the age of the host eggs had a significant influence on its acceptability and suitability for Trichogramma species. In the majority of Trichogramma species, the number of parasitized hosts decreased as host age increased (Hintz and Andow, 1990; Reznik and Kara, 2010; Pizzol et al., 2011).

Two factitious hosts, Angoumois grain moth, Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae) and Mediterranean flour moth, Ephesia kuehniella Zeller (Lepidoptera: Pyralidae) are mostly used as hosts for mass production of Trichogramma species. Several countries including France, Canada and Iran use E. kuehniella as host because of better production from rearing medium and improving sanitation condition (Smith, 1996). Furthermore, better performance of Trichogramma species that reared on E. kuehniella has been attributed to the larger size of their egg compared with the eggs of S. cerealella (Hassan et al., 1978; Bigler et al., 1987; Bigler, 1988; Corrigan and Laing, 1994).

Trichogramma evansens Westwood and Trichogramma brassicaceae Bezdenko are the most important biological control agents of lepidopteran pests in Iran. These parasitoids are sibling species and in morphological characteristic are similar (Ebrahim et al., 1988). Review of literature shows that the biological characteristics of T. brassicaceae parasitizing E. kuehniella eggs have been studied by several researchers (Bigler et al., 1987; Fleury and Bouletreau, 1993; Iraniopour et al., 2009; Ozder and Kara, 2010; Lashgari, et al., 2010), however, no detailed information regarding the effect of different factors such as E. kuehniella egg age on life history and life table parameters of T. evanescens is available. In the present study, the effect of host-egg age of E. kuehniella on host selection and suitability by T. evanescens was evaluated to determine the appropriate host age for mass production of this parasitoid.

Materials and Methods

Insect collection

A laboratory culture of T. evanescens was established from parasitoid wasps, collected from a citrus orchard using E. kuehniella eggs during July 2017 in Baghmalek city (31°38’03’’N, 49°53’05’’E), Khuzestan province. Parasitoids were reared at 25 ± 1 °C, a photoperiod of 16:8 (L: D) h and 55 ± 5% RH using E. kuehniella eggs as host. The E. kuehniella eggs used in this study were obtained from a colony kept at Golestan Mooud insectary company, Ahvaz, Iran. Using morphological and molecular characteristic (unpublished data), the third author identified the parasitoids to be T. evanescens. Parasitoids were reared for five to six generations in laboratory conditions and then were used for the experiment. Voucher specimens of T. evanescens were deposited in the Shahid Chamran University of Ahvaz arthropod collection (20-25 °C, 40-50% RH).

Experimental procedure

A preliminary experiment showed that at 25 °C, E. kuehniella eggs take 5 days to hatch. Consequently, 1, 2, 3 and 4-days-old E. kuehniella eggs were selected as test hosts (Tabebordbar, unpublished data). The newly emerged T. evanescens adult was allowed to mate for 8 h and then introduced into a clear glass tube (Diameter 1 cm, Height 10 cm) containing egg mass of E. kuehniella. The glass tubes were sealed with cotton-wool. Egg masses of E. kuehniella used in our experiments contained 40 ± 1 eggs. Egg masses were glued on a piece of white paper (5 by 1 cm). Parasitoids had no contact with host eggs before the tests. Female parasitoids were fed with droplets of honey deposited in the internal part of each tube during the experiments. The female parasitoid was allowed to parasitize E.
Kuehniella eggs in a growth chamber (25 ± 1 °C, 55 ± 5% and a photoperiod of 16: 8 L: D h) for 24 h. The parasitoid was removed after 24 h and tubes were kept in the incubator until all the parasitoid’s progeny emerged. Five replications were used for each egg age. The experiment was carried out in a completely randomized design. Parameters recorded were the number of parasitized eggs, juvenile developmental time of female and male parasitoids, number of emerged parasitoids and percentage of females in the progeny.

The effect of different host age on longevity and fecundity of progenies was studied by placing one adult female and one adult male (< 24 h old), obtained from the previous experiment in a glass tube (similar to tubes as described in the previous experiment) containing an egg mass of 40 ± 1-day-old E. kuehniella eggs and honey-water solution (10%). Males were replaced in case they died in the experiment. New eggs were offered daily to each female until all females died. A completely randomized design with 38 replications for each treatment (host age) was used. This experiment was also conducted in a growth chamber (25 ± 1 °C, 55 ± 5% R. H. and 16: 8 L: D). Longevity and fecundity of adult parasitoids were calculated. Those females which were injured during daily handling or those that died because of being submerged in honey droplets were excluded from data analysis.

Statistical analysis
The effect of egg age on the number of parasitized eggs, developmental time of offspring, the percentage of adult emergence and percentage of female progeny were analyzed by a one-way ANOVA using general linear model (PROC GLM), and the means were separated using Tukey’s honestly significant difference test at P < 0.05. The percentage values of adult emergence (survival rate) and female progeny were arcsine square root transformed to homogenize variances before an ANOVA was performed. All statistical analysis was performed using statistical software package SPSS Version 21.

The life history data from each host age were analyzed based on the age-stage, two sex life table (Chi & Liu, 1985; Chi, 1988) using TWOOSEX MSchart computer program (Chi, 2016). For each host age, we determined the age-stage specific survival rate (\(l_i \)), the age-stage specific fecundity (\(m_i \)) and other stage and age Chi (1988). The age-specific survival rate (\(l_i \)) was then calculated as:

\[
l_x = \sum_{j=0}^{k} S_{xj}
\]

Where \(k \) is the number of stages. The age-specific survival rate (\(l_x \)) was calculated as:

\[
m_x = \frac{\sum_{j=0}^{k} x_j S_{xj}}{\sum_{j=0}^{k} S_{xj}}
\]

The population parameters, the intrinsic rate of increase (\(r \)), finite rate of increase (\(\lambda \)), net reproductive rate (\(R_0 \)), mean generation time (\(T \)), were estimated in sequence. The intrinsic rate of increase was determined by iteratively solving the Euler-Lotka equation with age indexed from 0 (Goodman, 1982):

\[
\sum_{x=0}^{\infty} e^{-r(x+1)} l_x m_x = 1
\]

The finite rate of increase (\(\lambda \)) were calculated as follows:

\[
\lambda = e^r
\]

The mean generation time (\(T \)) is then calculated using the following equation:

\[
T = \frac{\ln R_0}{r}
\]

The bootstrap technique was used to estimate the means, variances, and standard errors of the population parameters (Efron and Tibshirani, 1993). As bootstrap uses random resampling, a small number of replications will generate variable means and standard errors. To generate less variable results, 100,000 replications were used in this study (Huang and Chi, 2013; Chi, 2016).

Results
The host age had a significant effect on the mean number of parasitized eggs by T. evanescens (F =
Suitability of *E. kuehniella* for *T. evanescens*

Table 1 Mean number of parasitized eggs, development time, survival rate and sex ratio (Female %) (± SE) of *Trichogramma evanescens* parasitizing *Ephesia kuehniella* eggs of different ages.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Host age (day)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of parasitized eggs</td>
<td></td>
<td>27.60 ± 0.49<sup>a</sup></td>
<td>21.67 ± 0.65<sup>b</sup></td>
<td>18.86 ± 0.76<sup>a</sup></td>
<td>13.54 ± 0.96<sup>b</sup></td>
</tr>
<tr>
<td>Female development time</td>
<td></td>
<td>9.83 ± 0.09<sup>a</sup></td>
<td>10.00 ± 0.04<sup>b</sup></td>
<td>10.23 ± 0.10<sup>b</sup></td>
<td>10.50 ± 0.12<sup>b</sup></td>
</tr>
<tr>
<td>Male development time</td>
<td></td>
<td>8.15 ± 0.15<sup>a</sup></td>
<td>8.25 ± 0.12<sup>b</sup></td>
<td>9.00 ± 0.12<sup>b</sup></td>
<td>9.45 ± 0.05<sup>b</sup></td>
</tr>
<tr>
<td>Sex ratio (% female)</td>
<td></td>
<td>0.81 ± 0.016<sup>c</sup></td>
<td>0.65 ± 0.011<sup>c</sup></td>
<td>0.55 ± 0.009<sup>c</sup></td>
<td>0.44 ± 0.012<sup>d</sup></td>
</tr>
<tr>
<td>Survival rate</td>
<td></td>
<td>83.33 ± 1.36<sup>d</sup></td>
<td>62.02 ± 2.18<sup>b</sup></td>
<td>51.03 ± 2.12<sup>d</sup></td>
<td>33.39 ± 2.37<sup>d</sup></td>
</tr>
</tbody>
</table>

Means in each row followed by the same letter(s) are not significantly different at $P < 0.05$ (Tukey test).
Table 2 Mean (± SE) of adult preoviposition period (APOP), total preoviposition period (TPOP), oviposition period, female and male longevity (day), daily and total fecundity of *Trichogramma evanescens* reared on different age *Ephestia kuehniella* eggs.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Host age (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>APOP</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>TPOP</td>
<td>9.82 ± 0.09</td>
</tr>
<tr>
<td>Oviposition period</td>
<td>6.93 ± 0.10</td>
</tr>
<tr>
<td>Female longevity</td>
<td>10.23 ± 0.11</td>
</tr>
<tr>
<td>Male longevity</td>
<td>7.46 ± 0.15</td>
</tr>
<tr>
<td>Daily fecundity</td>
<td>8.67 ± 0.15</td>
</tr>
<tr>
<td>Total fecundity</td>
<td>85.76 ± 1.01</td>
</tr>
</tbody>
</table>

Means in each row followed by the same letter(s) are not significantly different at *P* < 0.05 (paired bootstrap test).

Table 3 Life table parameters of *Trichogramma evanescens* reared on different age of *Ephestia kuehniella* eggs.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Host age (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRR (offspring/individual)</td>
<td>68.77 ± 3.19</td>
</tr>
<tr>
<td>R₀ (offspring/individual)</td>
<td>67.70 ± 4.59</td>
</tr>
<tr>
<td>r (day⁻¹)</td>
<td>0.345 ± 0.006</td>
</tr>
<tr>
<td>λ (day⁻¹)</td>
<td>1.41 ± 0.008</td>
</tr>
<tr>
<td>T (day)</td>
<td>12.19 ± 0.07</td>
</tr>
</tbody>
</table>

Means in each row followed by the same letter are not different using paired bootstrap procedure (*P* < 0.05).

Figure 1 Age-stage survival rate (*s*₀) of *Trichogramma evanescens* reared on different age of *Ephestia kuehniella* eggs.
Suitability of E. kuehniella for T. evanescens

Figure 2 Age-specific survivorship (l_x), age-stage fecundity (f_x), and age-specific fecundity (m_x) of Trichogramma evanescens reared on different age of Ephestia kuehniella eggs.

Discussion

Age of the host egg is an important factor which affects the availability, acceptability and suitability of various hosts for several Trichogramma species (Pak, 1986). Generally, younger host eggs are more frequently accepted for parasitism than older host eggs. In the current study, the differently aged host eggs of E. kuehniella were all accepted by T. evanescens. However, the number of parasitized eggs by T. evanescens on 1-day-old eggs of E. kuehniella were up to 2 fold higher compared with all other egg age categories, showing that 1-day-old host eggs are more easily used by T. evanescens for oviposition. Similar results have been reported for other Trichogrammatid species (Schmidt, 1994).

T. evanescens was able to develop faster in young eggs compared with old eggs. Similarly, Godin and Boivin (2000) also found that Trichogramma spp. developed and survived best in young eggs. As an egg gets older and during the different stages of embryogenesis, the nutrients available in the host egg are gradually incorporated and assimilated by the embryo, as a consequence, egg suitability for parasitoid development decline (Ruberson and Kring, 1993). Furthermore, Guang and Oloo (1990) stated that Trichogramma is sometimes unable to develop in old eggs. This phenomenon has been attributed either to the rotation of the host embryo or sclerotization of the head capsule (Pak, 1986). Also Pak reported that eggs of most lepidopetran host species are
suitable for *Trichogramma* development only if less than seventy-five percent of their development has taken place.

In accordance with our findings, survival rate (emergence rate) of *T. evanescens* was also negatively affected by host age. Ruberson and Kring (1993) reported that *Trichogramma pretiosum* (Riley) developing in old *Heliothis zea* (Boddie) eggs had lower survival than those in younger eggs. Reduction in survival rate as host eggs get older may or may not result from components such as delayed development duration. For instance, no significant differences in *Trichogramma cacoeciae* Maechl, *Trichogramma pricipium* Sugonjaev & Sorokina and *Trichogramma evanescence* Westwood emergence from different age eggs of *Phtorimae operclelula* (Zeller) was detected, although the lowest rates of emergence were documented for the oldest eggs (Saour, 2004).

Sex ratio of *T. evanescens* reared on different age of *E. kuehniella* egg are presented in Table 1. Our findings indicated that the age of *E. kuehniella* eggs had a significant effect on progeny sex ratio of *T. evanescens*. It should be noted that the sex ratio of *T. evanescens* was biased towards females for all host egg ages tested except 4-days-old eggs. Similar to our results, Tuncbilek and Ayvaz (2003) reported that egg ages of *E. kuehniella* and *S. cerealella* had a significant effect on the sex ratio of *T. evanescens* and that younger eggs produced more female parasitoids. However, no significant effect of host egg age on sex ratio was reported for *T. brassicae* on *Trichoplusia ni* (Hubner) and *Pieris rapa* (L.) (Godin and Boivin, 2000), *Trichogramma dendrolimini* Matsumura on *Ch. Supressalis* (Walker) (Zhang et al., 2013), *T. dendrolimini* on *Mamestra brassicae* (Linnaeus) (Takada et al., 2000), *T. cacoeciae* on *Lobesia botrana* Den. (Moreno et al., 2009), *T. pretiosum* (Riley) on *Diatraea grandio sella* Dyar (Calvin et al., 1997), *Trichogramma fuentesi* Torre on *Cactoblastes cactorum* (Berg) (Paraiso et al., 2012), and *Trichogramma pricipium* Sug et Sor on *S. cerealella* (Rezniket et al., 1997) which is different from our findings. Which is different than our findings. These differences may be explained by difference in host species, experimental conditions and different population.

At the same temperature Iranipour et al. (2010) reported *r* of 0.354/day for *T. brassicae* on the same host species, and same host age which is very close to the results obtained in the present study (*r* = 0.345/day) for *T. evanescens*. However, other laboratory studies have reported a variety of *r* values for *T. brassicae* including 0.504/day (Ozder and Kara, 2010) and 0.309/day (Lashgari et al., 2010) on the same host, same host age and at the same temperature. The discrepancy between the results of mentioned studies with current study may be due to differences in species or differences in the experimental conditions such as humidity.

T. evanescens developed faster on 1-day-old eggs and produced significantly more offspring than other egg ages tested. Therefore, it is recommended that 1-day-old eggs of *E. kuehniella* be used in mass production for *T. evanescens*. Furthermore, *T. evanescens* was able to parasitize a range of egg ages around its most preference; for a certain age of a host species may be a limiting factor in the performance of parasitoids under field conditions. The relatively broad host-age preference is helpful for the effectiveness of the parasitoids since different host egg ages usually exist simultaneously in the field.

Acknowledgements

Authors thank the research deputy of Shahid Chamran University of Ahvaz for supporting this research.

References

Suitability of E. kuehiella for T. evanescens

Suitability of *E. kuehniella* for *T. evanescens*

اثر سن تخم بر رشد و پارامترهای جدولی

Ephestia kuehniella (Lepidoptera: Pyralidae)

Trichogramma evanescens (Hymenoptera: Trichogrammatidae)

فاصله تابعی برداری*، پرورش شیشه، و ابراهیم ابراهیمی؟

1- گروه گیاهپزشکی، دانشگاه کشاورزی، دانشگاه شهید جمهوری اهواز، اهواز، ایران.
2- مؤسسه تحقیقات گیاهپزشکی کشور، تهران، ایران.

انتشارات الکترونیکی نویسندگان مسئول مکاتبه:

دریافت: ۲۴ مرداد ۱۳۹۷، پذیرش: ۴ شهریور ۱۳۹۸

چکیده: زنبور تریکوگراما* Trichogramma evanescens* Westwood به‌عنوان یک از مهم‌ترین عوامل کنترل بیولوژیک تخم بالا انگل‌داران می‌باشد که در سرپرست ایران گسترش دارد. در این مطالعه اثر سنین تخم بر تعداد تخم‌های پارازیته شده، طول دوره رشد، برش از بلوط، نسبت جنسی، طول عمر و زادآوری بر نژادان زنده در تکوان *E. kuehniella* و رندهای کنترل بیولوژیک اهمیت دارد. به علت سن تخم شامل ۲ و ۴ روزه *T. evanescens* و نسبت گیری کرده با عمر کمتر از ۲۴ ساعت حذف گیری کرد. نتایج نشان داد که در تمامی تخم‌های مرده از ابتدای رشد نمدود و از طریق کنترل بیولوژیک در سنین تخم شامل ۲ و ۴ روزه *E. kuehniella* نژادان مادری بهترین نتایج را نشان داد. همچنین نژادان خارج شده از ابتدای میزان زنده خاصیتین تخم ندارند. نرخ تخم‌های جمعیت (۱) در جمعیت در ۲ و ۴ روزه بهترین نتایج و نرخ تخم‌های جمعیت (۲) در جمعیت در ۴ روزه بهترین نتایج داشتند. نرخ تخم‌های جمعیت (۲) در جمعیت در ۴ روزه بهترین نتایج داشتند.

واژگان کلیدی: پارازیتولوژی تخمِ، رشد و نمو، نسبت جنسی، نرخ نژادان زنده و پارازیته شده، دوره رشد.