

Research Article

Plant growth promotion and bacterial canker control of Lycopersicon esculentum L. cv. Campbell 33 by biocontrol agents

Said El kinany^{1, 2}, Abdellatif Haggoud², Abdellatif Benbouaza¹, Abdelaaziz Bouaichi¹ and El Hassan Achbani¹

- 1. Laboratory of Plant Bacteriology and Biological Control, National Institute of Agronomic Research, Meknes, Morocco.
- 2. Laboratory of Microbial Biotechnology, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Fez, Morocco.

Abstract: Endophytic and epiphytic bacteria have been reported as agents of bio-control of diseases and plant growth promotors. Here, in vitro and greenhouse experiments were conducted to evaluate the action of two microbial strains; Aureobasidium pullulans and Pantoea agglomerans, on biocontrol of bacterial canker and growth promotion of tomato (Lycopersicon esculentum cv. Campbell 33). Two frequencies of treatment were used to assess their potential effect (15 and 30 days between two subsequent treatments). The two strains were able to inhibit, in vitro, the growth of Clavibacter michiganensis subsp. michiganensis the causative agent of tomato canker. Also, their antagonistic effects were confirmed in greenhouse conditions. Indeed, bacterial canker incidence in tomato plants treated with A. pullulans and P. agglomerans separately or in mixture was significantly less severe (16%) compared to the positive control (83%). The treatment frequency (intervals of 15 or 30 days) and the choice of strains to inoculate (separated or combined strains) appear to be essential for obtaining significant results. Consequently, both A. pullulans and P. agglomerans strains highly reduced incidence of bacterial canker particularly when tomato plants were treated at a frequency of fifteen days.

Keywords: Tomato, Plant growth promotion, Bacterial canker, Bio-control agents

Introduction

Bacterial canker caused by *Clavibacter michiganensis* subsp. *michiganensis* is one of the major and serious diseases of tomato (Davis *et al.*, 1984; Yogev *et al.*, 2009). It is a highly contagious and destructive disease both in greenhouses and in the field (Utkhede and Koch, 2004). All areas of Moroccan tomato

Handling Editor: Naser Safaie

*Corresponding author, e-mail: said.elkinany@usmba.ac.ma Received: 31 December 2016, Accepted: 9 April 2017

Published online: 13 July 2017

production are infested with the pathogen whose severity varies by regions (Yogev *et al.*, 2009). Infected seeds and transplants are the main source of primary inoculums of *C. michiganensis* subsp. *michiganensis* (Fatmi *et al.*, 1991).

Recommended chemical treatments to fight against this disease only reduce the population of the pathogen on the surface of plants or infested seeds (Hausbeck *et al.*, 2000). Considering the less efficiency of chemical treatments and their impact on health and environment, research and development of alternative control methods are recommended.

Biological control is very promising because many studies conducted all over the world have led to encouraging results. In particular, microbial strains (bacteria, fungi and yeasts) have been known for their positive effects and are beneficial in the fight against certain pathogens that inhibit plant growth (Achbani et al., 2005; Bencheqroun et al., 2006; Faheem et al., 2015; Faquihi et al., 2015; Sadik et al., 2015). In this work, our aims were i) assessment of two micro-organisms, yeast and bacterium, A. pullulans Ach2-1 and P. agglomerans 2066-7, for their effect on promoting tomato growth in a greenhouse experiments and ii) their activity against bacterial canker; iii) and also the effect of treatment frequency on plant growth and disease incidence in greenhouse.

Materials and Methods

Biological materials and growth conditions

Seedlings of tomato L. esculentum were obtained from seeds of a susceptible cultivar "Campbell 33" cultivated in plastic containers filled with a mixture of sterile soil from garden of Regional Center of Agriculture Research and peat (1:1 v/v) in a greenhouse under a 16 h light regime and 60-70% relative humidity at 25 to 32 °C and without supplementary fertilizers such as described previously (Amkrazet al., 2013). After 2 months of growth, seedlings were divided into two groups. The first was used to evaluate the effectiveness of the selected antagonists in reducing the canker infection in greenhouse and the second group of plants was used to vegetative growth promotion by these strains.

The pathogen *C. michiganensis* subsp. *michiganensis* strain (*Cmm* 1616-3) used in this study was provided by Regional Center of Research and Agriculture of Meknes, Morocco (RCRA). It was activated by three subcultures on the Yeast Peptone Glucose Agar (YPGA) medium (Yeast extract, 5g; Peptone, 5g; Glucose, 10g; Agar, 18g; and distilled water, 1 l) and its pathogenicity was confirmed by the tobacco (*Nicotiana*

glutinosa) hypersensitivity test following a slightly modified method described previously (Atkinson et al., 1985). Briefly, the suspension of bacterial culture was prepared in sterile distilled water and its concentration was adjusted (108 CFU/ml) by spectrophotometer (UV-mini 1240. Shimadzu) at 600 nm. An aliquot was then injected into tobacco leaves using a syringe without needle (the test was confirmed for three replicates). The reaction was assessed as necrotic area around inoculums that is characterized in 24 hours at room temperature (22 to 28 °C). An aliquot of sterile distilled water was injected as negative control.

Two antagonists were used in this study: a yeast A. pullulans (Ach 2-1) isolated from the surface of Golden Delicious healthy apples 2005) and (Achbani *et al.*, endophytic bacterium P. agglomerans (2066-7) isolated from olive plant (Bouaichi et al., 2015). These strains were selected for their ability to promote growth and to control soft rot disease caused Pectobacterium potato by carotovorum as previously provided (Faquihi et al., 2015) and 2066-7 for their biocontrol effect against bacterial diseases of onion (Sadik et al., 2015).

In vitro antagonism test

In vitro test for the ability of the antagonistic strains to inhibit growth of Cmm1616-3 strain was performed according to the spot method (Bouddyach et al., 2001). Briefly, the bacterial suspension of Cmm 1616-3 strain (108 CFU/ml) was spread out on YPGA medium and excess of suspension was eliminated and inoculated plates were dried for 15 min under a laminar flow hood. Once dry, an aliquot (10 µl) of each strains suspension (108 and 107 CFU/ml, respectively for the 2066-7 and Ach2-1) was spotted in the same Petri dishes (an aliquot of sterile distilled water was used as a control). The measure of the inhibition zones was carried after incubation at 26 °C for 72h and the test was carried out in three replicates for each bio-agent strain.

Assessment of vegetative growth in greenhouses

Experiments were conducted in a greenhouse ($T^{\circ} = 26-32$ °C, RH = 60-70%) to evaluate the effect of the tested strains on plant growth. The garden soil was subjected to two cycles of autoclaving, separated by 24 hours, at 120 °C for 20 min and was then potted (27 cm x 35 cm).

Treatment of two-month-old seedlings, previously prepared, was carried out by spraying a 50 ml of the microbial suspension (10⁸ and 10⁷ CFU/ml respectively for 2066-7 and Ach 2-1 strains) at the rhizosphere according to method developed by Boudyach et al., (2004). Three treatments (five replicates for each) have been realized in a randomized block design: (with T1 Aureobasidium pullulans Ach2-1), T2 (with Pantoea agglomerans 2066-7) and T3 (with their combination) and a control test (T0) consisted of untreated plants. The first microbial inoculation with Ach 2-1 and 2066-7 strains was done 15 days after transplanting of seedlings. Furthermore, to assess the of treatment frequency, impact this experiment was repeated twice with 15 or 30 days between the two subsequent inoculations. The experiment was continued for three months from the first inoculation with microbial strains and all plants were irrigated to field capacity without any fertilizers.

The growth was followed by evaluation of agronomic parameters for all plants and treatments, including plant height, diameter of their main stems measured by slide calipers (Fisher Scientific HARDENED) and leaf areas measured by plan-meter (Bioscientific ADC LTD) and chlorophyll "a" and "b" content determined as described below. The first measurements were made 20 days after the first inoculation, the second after 40 days to calculate the growth rate of agronomic parameters the formula below was used (Schultz, 2001):

$$T = \frac{\Delta L}{\Delta T} \times \frac{1}{L_0}$$

 Δ L: Difference between the first and the final measurements.

 ΔT : Interval of time between subsequent measurements.

L₀: Value of the first measurement.

Chlorophyll "a" and "b" contents were determined at the end of experiments for the two frequencies of treatment using the method of extraction by dimethyl sulfoxide (DMSO) solvent as previously described by (Ramsay, 1974). Ten gramme of leaf tissue (Me) were placed in a test tube containing 7 ml of DMSO, and then incubated for 45 minutes at 65 °C until the disappearance of all green color. The extracted volume is recuperated in a new tube (Ve) and complemented with DMSO (until 10 ml). For analyses of chlorophyll a and b content, the optical density was determined at two wavelengths using a spectrophotometer UV-mini 1240, Shimadzu (the length of spectroscopic tubes is a = 1 cm). The Chl "a" and Chl "b" amount was calculated according to the formula (UNESCO, 1966).

$$\begin{split} &Chlorophyll\ a = 12.7\,(\,OD663\,) - 2.69(\,OD645\,)\,\frac{Ve}{1000\times Me\times\alpha} \\ &Chlorophyll\ b = 22.9(\,OD645\,) - 4.68(\,OD663\,)\,\frac{Ve}{1000\times Me\times\alpha} \end{split}$$

Where;

OD: optical density at certain wave length (645 or 663 nm).

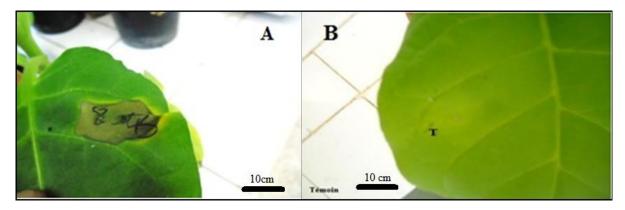
Ve: final volume of extract; Me: weight of sample; α: length of the light path (1 cm).

Biological control of bacterial canker in greenhouse

Experiments were carried out in greenhouse under the similar conditions of plant growth experiments previously described. The aim was to assess the suppressive effect of these antagonistic strains against bacterial canker. Five treatments were performed with six replicates in a randomized block design; TO (control, without inoculums), T'O (infected with pathogen strains *Clavibacter michiganensis* sub. sp *michiganensis* (*Cmm*) 1616-3 (10⁸ CFU/ml)), T'1 (treated with Ach 2-1 strain and infected by pathogen *Cmm*

1616-3), T'2 (treated with 2066-7 strain and infected by Cmm 1616-3), T'3 (treated with the combination of Ach2-1 and 2066-7 strains, and infected by pathogen Cmm 1616-3). This experiment was made twice for assessment of the impact of inoculation frequency (15 or 30 days) on the suppressive effect of antagonistic strains. The infection with pathogen Cmm 1616-3 (108 CFU/ml) was carried out by rhizosphere infestation (50 ml of microbial suspension) after wounding the roots of host plant (Boudyach et al., 2004) on the seventh day from the initial treatment by antagonistic strains. Disease incidences (%) were calculated using the formula (Amkrazet al., 2013): infected.

 $DI(\%) = \frac{Number of \ symptomatic \ plants}{Number of \ infected \ plants \ within \ treatments} \times 100$


where DI is Disease incidences (%).

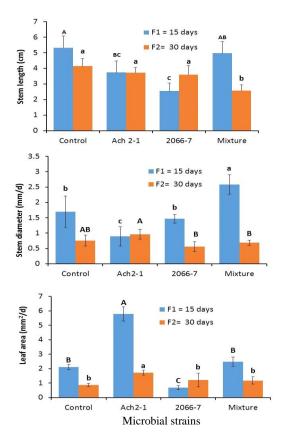
Statistical analysis

The data were subjected to one-way ANOVA using the SPSS 21.0 software program. Means and standard errors were calculated for five replicates and they were compared by the Duncan's multiple range test and statistical significance was determined at 5% level.

Results

In this study, two microbial strains isolated and selected at the Regional Center Research and Agriculture of Meknes (CRRA), Morocco, were evaluated for their contribution to plant growth promotion of tomato and their antagonistic effect against *Cmm*, causative agent of bacterial canker in this plant (*Lycopersicon esculentum* cv. Campbell 33). This phytopathogenic bacterium was confirmed for ability to produce hypersensitive reaction on the tobacco leaves (Fig. 1).

Figure 1 Hypersensitive reaction around the *Clavibacter michiganensis* subsp. *michiganensis* inoculation site (A) and negative control without necrosis (B).


In vitro antagonism

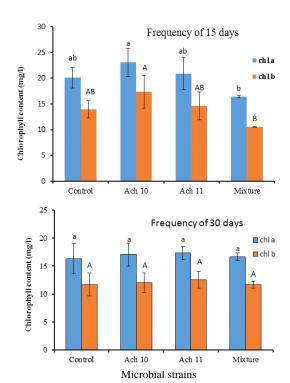
The potential antagonistic strains previously isolated and confirmed as positive for hypersensitivity test (Fig. 1) were assayed against the selected phytopathogenic bacterium *Cmm* 1616-3, using *in vitro* confrontations described previously. The two antagonistic strains have shown promising results for their effect against the pathogen. Indeed, the inhibition diameters were of 21 mm and 16mm, for *A. pullulans* Ach2-1 and *P. agglomerans* 2066-7, respectively. Hence these results are

promoting for using in the greenhouse experiments.

Vegetative growth in greenhouse Growth parameters

The influence of *A. pullulans* Ach2-1 and *P. agglomerans* 2066-7 strains on plant growth rate of tomato was evaluated by measuring various parameters. Comparison between the averages of results obtained for each measurement and for the different parameters studied is presented in Figs. 2 and 3.

Figure 2 Growth rates of stem length, diameter and leaf area of tomato plants after treatment at intervals of 15 days or 30 days with strains of *Aureobasidium pullulans* (Ach2-1) and *Pantoea agglomerans* (2066-7) (data are averages (± standard deviation) of five replicates). (Sticks topped with the same letters do not differ significantly at 0.05%).


Both strains tested separately did not show a significant contribution to improving the growth of the plant length in either of the treatment frequencies 15 or 30 days (Fig. 2). However, in the case of the mixture of the two strains, plant diameter was increased in comparison with the control (2.59 mm.d⁻¹versus 1.74 mm.d⁻¹) while this improvement was not observed in the case of plants treated every 30 days.

Regardless of the period of time between the treatments, Ach 2-1 strain strictly contributed to the growth of leaf area, particularly when the treatment interval was short (15 days). Indeed, the growth rate of leaf area was of 5.98 mm². d⁻

¹ and of 2.1 mm². d⁻¹ for treated plants and control, respectively. But, the combination of the two strains did not increase leaf area.

Chlorophyll « a » and « b » content

Influence of microbial inoculation with Ach2-1 and 2066-7 strains on the production of chlorophyll "a" and "b" was also investigated (Fig. 3). The best results were obtained with Ach 2-1 strain which increased significantly the amounts of both chlorophyll "a" and "b" when the interval between two subsequent treatments was 15 days. However, the 2066-7 strain and the combination of the two strains were unable to improve the content of chlorophylls a and b, regardless of the treatment frequency.

Figure 3 Influence of microbial inoculation with strains of *Aureobasidium pullulans* (Ach2-1) and *Pantoea agglomerans* (2066-7) on the production of chlorophyll a and b when the interval between two subsequent treatments is 15 days and 30 days; data are averages (\pm SD of five replicates). (Sticks topped with the same letters do not differ significantly at $\alpha = 0.05$).

Biological control of bacterial canker

Characteristic symptoms of bacterial canker appeared after 30 days on infected control

plants. The leaves turned yellow gradually, and then began to wilt unilaterally and bilaterally. In fruit, canker was manifested by the development of yellow spots.

Bacterial canker incidence in plants treated with Ach 2-1 or 2066-7 strains separately or with their mixture was less severe compared to the positive control, regardless the treatment frequency (table 1). However, the protective effect of two strains, used separately, was identical when the frequency of treatment was 15 days. When this frequency was of 30 days, the protective effect of the strain 2066-7 became more important while that of the strain Ach 2-1 decreased. Also it is noted that the protective effect of the mixture was higher when the frequency of treatment was 30 days.

Table 1 Bacterial canker *Clavibacter michiganensis* subsp. *michiganensis* incidence in plants treated every 15 days or 30 days by bacterial strains.

Treatments	Disease incidence (%)	
	15 days ¹	30 days ¹
Ach 2-1	49.00 ± 3.5 b	$66.54 \pm 5.8c$
2066-7	$50.00\pm5.75b$	$33.00 \pm 2.7b$
Mixture	$33.32 \pm 2.7a$	$16.67 \pm 4.2a$
Control	$83.33 \pm 5.34c$	

 $^{^{\}text{T}}$ Means followed by the same letters are not significantly different (Duncan's multiple range test, P < 0.05). Abbreviations: *Aureobasidium pullulans* (Ach2-1) and *Pantoea agglomerans* (2066-7).

Discussion

The first part of greenhouse experiments evaluated the contribution of strains Ach 2-1 and 2066-7 to the vegetative growth promotion of tomato plants by measurement of all growth parameters and chlorophyll "a" and "b". These results corroborated other research previously mentioned; (Satrani *et al.*, 2009) showed that the active stimulation of length of *Cedrus atlantica* rod by two *Pseudomonas fluorescens* A6RI and TGI252, was directly related to the secretion of phytohormones (i.e. the gibberellins) synthesized by these rhizobacteria. These phytohormones would act by strengthening or accelerating development of both the root system and the

aerial part of plants. Our results confirmed that the response of microbial strains-treated plants depends on the specific interactions of host plant- microorganism. Zare et al., (2011) and Amkraz et al., 2013 reported that the stimulation of the growth of the tomato cv. Campbell 33 inoculated with Pseudomonas isolates was due to the fact that rhizobacteria increase the root area and hence the rate of exchange by the root system. Therefore, this allows the exploration of soil volume and enhances availability and nutrients to plants, especially iron, leading to a better development of the aerial and root part of the plants. For stem length no improvement was significantly mentioned. These results contrast sharply with those found by Kumar (2007) who found that the strain of Pseudomonas B-25 significantly improved the growth of tomato height by 49.66% compared to control plants (Kumar, 2007).

Finally, the growth parameters evaluated in our study were not affected similarly by Ach 2-1 and 2066-7 strains inoculation as so well as previously reported; such a parameter is associated with such a microbial strain or such combination, hence there is a necessity to check the compatibility between the microbial strains used in combinations (Jäderlund *et al.*, 2008).

In the second part of the study, the capacity pullulans Ach2-1 and of Pantoae agglomerans 2066-7 strains to protect tomatoes against canker pathogen and to improve plant growth was investigated. The two strains showed their ability to stop the growth of the Cmm 1616-3 pathogen. In 2006, by performing the same technique, researchers found that among 70 tested isolates, 34 showed growth inhibition more than or equal to 6 mm (Amkraz et al., 2010). According to researches, the threshold for selecting antagonists was more than or equal 13 mm (Amkraz et al., 2010; Xu and Gross, 1986). Thus, the two strains used in this study, would be good candidates for biological control of Cmm1616-3 greenhouse. Although, in vitro results do not necessarily indicate that the strains will be efficient to reduce or eradicate tomato canker in 2010 and greenhouse (Amkraz et al.,

Bencheqroun *et al.*, 2006). For this reason, we tested the ability of these strains to protect tomato plants against canker caused by the pathogen *Cmm* 1616-3in greenhouse.

In plants treated every 15 days by Ach 2-1 and/or 2066-7 strains, the reduction of bacterial canker (R%) was similar (39.99%). This proportion was 60% when a mixture of both strains was used; hence it seems that the interaction of the combination of strains assisted in biocontrol of bacterial canker (Amkraz et al., 2010). However, in plants where the treatment frequency was higher (30 days), the Ach 2-1 strain contributed to the reduction in the incidence of canker by only 20%, while the 2066-7 strain led to a reduction of 60%. This could be due to the ability of 2066-7 strain to colonize the roots and compete microorganisms against other through antibiosis. These results were similar to those found by other researchers using bacteria isolated from tomato root or tomato rhizosphere (Amkraz et al., 2010). Indeed, the incidence of bacterial canker on L. esculentum cv. Campbell 33 was 11.5 % in the case of RN 39and RN 69 isolates when used in combination, whereas it was 21.5% or 23.5% when the two strains were used separately.

Otherwise, promising results were obtained when using Ach 2-1 and 2066-7 strain for biological control of *P. carotovorum* pv. *carotovorum*, causative agent of soft rot in potato (Faquihi *et al.*, 2015). In addition, another strain of *A. pullulans* (Ach1-1) was involved in biological control of *Penicillium expansum*, causative agent of blue mold, postharvest disease of apples and it showed impressive growth inhibition of this phytopathogen (Bencheqroun *et al.*, 2006).

Recently, Sadik et al., (2015), showed that the Pantoae agglomerans 2066-7 strain has an important effect against Pseudomonas marginalis, Pseudomonas viridiflava, Pantoea ananatis and Xanthomonas retroflexus, postharvest-pathogens of onion bulbs. Indeed, the inhibition percent against these pathogens on culture medium were of 24.78%, 26.66%, 25.5% and 14.44%, respectively. These results

were confirmed on wounded bulbs of onion. So, the 2066-7 strain at 10^7 CFU/ml was able to reduce the diameter of the lesions; the percentages reduction were 100% and 62% against *P. viridiflava* and *X. retroflexus*, respectively (Sadik *et al.*, 2015).

These inhibitory effects could be due to antimicrobial substances such as: hydrogen cyanide (HCN), phenazines, pyrrolnitrin, 2,4-diacetylphloroglucinol, pyoluteorin, viscosinamide and tensin that are produced by antagonistic strains (Bhattacharyya and Jha, 2012).

Nevertheless, compatibility between microbial strains is a key factor that must be considered for controlling phytopathogenic bacteria or fungi. For example, a study of the interactions between bacterial strains applied for the biological control of wilt caused by Fusarium oxysporum fsp. radicis conducted and showed that the best reduction of radish wilt was obtained when using the Pseudomonas fluorescens RS 111 and P. putida RE8 strains separately, while suppression of the disease was not as well in the case of their combination. Furthermore, application of a mutant strain of P. fluorescens RS 111-a in combination with P. putida RE8 reduced more effectively tomato wilt (Boer et al., 1998). Hence, when searching for antagonistic or plant growth-promoting microorganisms, important to test for the most suitable combination of plant, bacteria and fungi in order to achieve satisfactory plant growth benefits (Jäderlund et al., 2008).

Conclusions and perspective

Improving tomato growth (*L. esculentum* cv. Campbell 33) was studied through involvement *in vitro* and *in vivo* of two microbial strains Ach 2-1 and 2066-7 previously described. Growth improvement was related to the microbial strains, growth parameter, and to the frequency of treatment. In the perspective of biological control of bacterial canker and growth enhancement of tomato, the strain 2066-7 was well adapted to the rhizosphere and root exudates of tomato and significantly decreased

the disease incidence at treatment frequency of 30 days, while the Ach 2-1 strain was effective for growth promotion of tomato, particularly for chlorophyll production, stem diameter and leaf area, hence their importance in field conditions application to study and research behaviors in rhizosphere containing other microorganism which can be synergistic competitive antagonistic. or Also dynamics in the rhizosphere are recommended to understand their adaptation in different soil structures. However studies concerning their antibiotic resistance and field applications as effective biocontrol strategies are suggested. Furthermore application of Ach2-1 strains in field condition was carried out and showed its potential in growth and yield increase of date palm (data not shown).

References

- Achbani, E. H., Mounir, R., Jaafari, S., Douira, A., Benbouazza, A. and Jijakli, M. H. 2005. Selection of antagonists of postharvest apple parasites: *Penicillium expansum* and *Botrytis cinerea*. Communications in Agricultural and Applied Biological Sciences, 70: 143-149.
- Amkraz, N. 2013. Utilisation des *Pseudomonas* spp. *fluorescents* et des plantes aromatiques et médicinales contre *Clavibacter michiganensis* subsp. *michiganensis*, agent du chancre bactérien de la tomate. Ph.D. Dissertation, Université Ibn Zohr, Morocco. 81 PP.
- Amkraz, N., Boudyach, E. H., Boubaker, H., Bouizgarne, B. and Aoumar, A. A. B. 2010. Screening for fluorescent pseudomonades, isolated from the rhizosphere of tomato, for antagonistic activity toward *Clavibacter michiganensis* subsp. *michiganensis*. World Journal of Microbiology and Biotechnology, 26 (6): 1059-1065.
- Atkinson, M. M., Huang, J. S. and Knopp, J. A. 1985. The Hypersensitive Reaction of Tobacco to Pseudomonas syringae pv. pisi. Plant Physiology, 79, 843-847.doi:10.1104/pp.79.3.843.
- Benchegroun, S. K., Bajji, M., Massart, S.,

- Bentata, F., Labhilili, M., Achbani, H., El Jaafari, S. and Jijakli, H. 2006. Biocontrol of blue mold on apple fruits by *Aureobasidium pullulans* (strain Ach 1-1): in vitro and in situ evidence for the possible involvement of competition for nutrients. Communications in Agricultural and Applied Biological Sciences, 71 (3 Pt B), 1151-1157.
- Bhattacharyya, P. N. and Jha, D. K. 2012. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28: 1327-1350. doi:10.1007/s11274-011-0979-9.
- Boer, M. de, Sluis, I. van der, Loon, L. C. van, Bakker, P., de Boer, M., van der Sluis, I., van Loon, L.C., Duffy, B., Rosenberger, U. and Defago, G. 1998. In vitro compatibility between fluorescent Pseudomonas spp. strains can increase affectivity of Fusarium wilt control by combinations of these strains. Bulletin of OILB SROP 21, 257-261.
- Boudyach, E. H, Fatmi, M, Akhayat, O, Benizri, E. and Aoumar, A. A. B. 2001: Selection of Antagonistic Bacteria of *Clavibacter michiganensis* subsp. *michiganensis* and Evaluation of Their Efficiency Against Bacterial Canker of Tomato, Biocontrol Science and Technology, 11: 1, 141-149.
- Boudyach, E. H., Fatmi, M., Boubaker, H., Aoumar, A. A. B. and Akhayat, O. 2004. Effectiveness of fluorescent pseudomonads strains HF 22 and HF 142 to control bacterial canker of tomato. Journal of Food Agriculture and Environment, 2 (3): 115-120.
- Davis, M. J., Gillaspie Jr, A. G., Vidaver, A. K. and Harris, R. W. 1984. Clavibacter: a new genus containing some phytopathogenic coryneform bacteria, including *Clavibacter xyli* subsp. *xyli* sp. nov., subsp. nov. and *Clavibacter xyli* subsp. *cynodontis* subsp. nov., pathogens that cause ratoon stunting disease of sugarcane and bermudagrass stunting disease. International Journal of Systematic and Evolutionary Microbiology, 34 (2): 107-117. doi:10.1099/00207713-34-2-107.
- Faheem, M., Raza, W., Zhong, W., Nan, Z., Shen, Q. and Xu, Y. 2015. Evaluation of the

- biocontrol potential of *Streptomyces* goshikiensis YCXU against *Fusarium* oxysporum f. sp. niveum. Biol. Control, 81: 101-110. doi:10.1016/j.biocontrol.2014.11.012.
- Faquihi, H., Mhand, R. A., Ennaji, M., Benbouaza, A. and Achbani, E. 2015. Aureobasidium pullulans (De Bary) G. Arnaud, a Biological Control against Soft Rot Disease in Potato Caused by *Pectobacterium carotovorum*. International Journal of Science and Research, 3: 1779-1786.
- Fatmi, M., Schaad, N. C. W. and Bolkan, H. C. A. 1991. Seed treatments for eradicating *Clavibacter michiganensis* subsp. *michiganensis* from naturally infected tomato seeds. Plant Disease, 75 (4): 383-385.
- Hausbeck, M.K., Bell, J., Medina-Mora, C., Podolsky, R. and Fulbright, D. W. 2000. Effect of bactericides on population sizes and spread of *Clavibacter michiganensis* subsp. *michiganensis* on tomatoes in the greenhouse and on disease development and crop yield in the field. Phytopathology, 90: 38-44. doi:10.1094/PHYTO.2000.90.1.38.
- Jäderlund, L., Arthurson, V., Granhall, U. and Jansson, J. K. 2008. Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: As revealed by different combinations. FEMS Microbiology Letters, 287: 174-180.doi:10. 1111/j.1574-6968.2008.01318.x.
- Kumar, R. K. 2007. Evaluation of plant growth promoting rhizobacteria strains against tmv on tomato (Doctoral dissertation, UAS, Dharwad).
- Ramsay, A. J. 1974. Improved extraction of chlorophyll a and b from algae using dimethyl sulfoxide. Cawthron Institute P.O.

- Box 175 Nelson, New Zealand.
- Sadik, S., Mazouz, H., Benbouazza, A. B. A. and Achbani, E. H. 2015. Biological Control of Bacterial Onion Diseases using a Bacterium, *Pantoea agglomerans* 2066-7. International Journal of Science and Research, 4: 103-111.
- Satrani, B., El Ouadihi, N., Guedira, A., Frey-Klett, P., Arahou, M. and Garbaye, J. 2009.
 Effet de la bactérisation des graines sur la croissance des plants de Cedrus atlantica Manetti. Biotechnologie, Agronomie, Société et Environnement, 13 (3): 367-372.
- Schultz, C. 2001. Effect of (vesicular-) arbuscular mycorrhiza on survival and post vitro development of micropropagated oil palm (Elaeis guineensis Jacq.). Elektronische Dissertatioonen der Georg-Aug-Universität Göttingen. http://webdoc. sub. gwdg.de/diss/2002/schultz/index. html, 5-14.
- UNESCO. 1966. Determination of photosynthetic pigments in sea-water. Monographs on Oceanographic Methodology, 1: 1-69. doi:10.1007/s13398-014-0173-7.2
- Utkhede, R. and Koch, C. 2004. Biological treatments to control bacterial canker of greenhouse tomatoes. Biocontrol, 49 (3): 305-313.
- Xu, G. W. and Gross, D. C. 1986. Selection of fuorescent pseudomonas antogonistic to Erwinia carotovora and supressive of potato seed piece decay. Phytopathology, 76: 414-222.
- Yogev, A., Raviv, M., Kritzman, G., Hadar, Y., Cohen, R., Kirshner, B. and Katan, J. 2009. Suppression of bacterial canker of tomato by composts. Crop Protection, 28: 97-103. doi:10.1016/j.cropro.2008.09.003.

تحریک رشد گیاه و کنترل شانکر باکتریایی گیاه 33 Lycopersicon esculentum L., cv. Campbell 33 به کمک عوامل کنترل زیستی

سيد ال كيناني 1,1 ، عبدالطيف حقود 1 ، عبدالطيف بنبوزا 1 ، عبدالعزيز بوايچي و ال حسن آچباني

۱- آزمایشگاه باکتریشناسی گیاهی و کنترل بیولوژیک، مؤسسه ملی تحقیقات زراعی، مکناس، مراکش.

۲- آزمایشگاه بیوتکنولوژی میکروبی، دانشکده علوم و فنون، دانشگاه سیدی محمدبن عبداله، فاس، مراکش.

* پست الكترونيكي نويسنده مسئول مكاتبه: said.elkinany@usmba.ac.ma

دریافت: ۱۱ دی ۱۳۹۵؛ پذیرش: ۲۰ فروردین ۱۳۹۶

چکیده: باکتریهای اندوفیت و اپی فیت به عنوان عوامل کنترل زیستی بیماریها و افزایش دهندههای رشد گیاه شناخته شدهاند. در این پژوهش، آزمایشهای درون شیشهای و گلخانهای به منظور ارزیابی اثر دو استرین میکروبی Aureobasidium pullulans و Pantoae agglomerans بر کنترل زیستی شانکر باکتریایی و افزایش رشد گوجهفرنگی (Lycopersicon esculentum cv. Campbell 33) انجام شد. دو تیمار با فاصله و افزایش رشد گوجهفرنگی در شرایط و آنها به کارگرفته شد. دو استرین موجب بازداری از رشد باکتری از رشد باکتری از رشد باکتری از رشد باکتری اثرات آنتاگونیستی آنها در شرایط گلخانه تأیید شد. نتایج نشان داد، وقوع شانکر میخنین اثرات آنتاگونیستی آنها در شرایط گلخانه تأیید شد. نتایج نشان داد، وقوع شانکر باکتریایی در گیاه گوجهفرنگی تیمار شده با Reaglomerans و P. agglomerans (هر یک به تنهایی یا مخلوط دو استرین) به طور قابل توجهی (۱۶٪) در مقایسه با شاهد (۱۳۸٪) کمتر بود. همچنین، تکرار تیمار (با فاصله ۱۵ یا ۳۰ روز) و انتخاب نوع استرینها برای آلودگی (به طور مجزا یا مخلوط استرینها) برای به دست آوردن نتایج قابل توجه ضروری میباشند. به طور کلی، هر دو استرین میالستند کاهش دادند، به خصوص زمانی که گیاهان گوجهفرنگی با فاصله ۱۵ روز تیمار شده بودند.

واژگان کلیدی: گوجهفرنگی، تحریک رشد گیاه، شانکر باکتریایی، عوامل کنترل زیستی