

Research Article

Saffron Crocus sativus L. tolerance to some herbicides

Zahra Hosseini-Evari¹, Ebrahim Izadi Darbandi^{1*}, Mohammad Kafi¹ and Hassan Makarian²

- 1. Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
- 2. Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.

Abstract: Although, weed control in saffron farms is critical, no herbicide is registered for saffron fields. This experiment was carried out in a randomized complete block design with three replicates during 2016-2017. Treatments included application of trifluralin, pendimethalin, metribuzin, bentazon, ioxynil, oxadiazon, oxyfluorfen, haloxyfop-r-methyl, sethoxydim, clethodim, cycloxydim, nicosulfuron, rimsulfuron, tribenuron methyl, foramsulfuron, paraquat, dicamba + triasulfuron, and dicamba + tritosulfuron herbicides at recommended and reduced doses. Mother corms were planted on 10th of September 2016 at 5 × 10 cm corms distance and planting depth of 15 cm. Measured indices included: number of flowers, fresh and dry weights of flower and stigma, number of replacement corms and total corms weight. Results showed that visual phytotoxic symptoms were not observed in pre emergence herbicides. Post emergence herbicides showed different levels of phytotoxicity from slight to severe. The application of paraguat, oxyfluorfen and oxadiazon, caused higher levels of phytotoxicity compared to other herbicides. Acetyl CoA carboxylase inhibitor herbicides caused the least injury to saffron, while acetolactate synthase inhibitor herbicides damaged saffron severely. The highest and the lowest dried stigma yield was obtained from control treatment (0.54 g.m⁻²) and post application of tribenuron methyl (0.003 g.m⁻²) respectively. Among pre emergence herbicides, the highest dried stigma yield was recorded for pendimethalin herbicide. The post application of metribuzin, oxadiazone and oxyfluorfen resulted in greater dried stigma yield than other broadleaf herbicides. By reducing herbicide dose saffron yield increased and phytotoxic levels were reduced significantly. Among the studied herbicides, trifluralin, oxyfluorfen, pendimethalin and metribuzin can be used as selected herbicides in saffron.

Keywords: Chemical control, Herbicide, Phytotoxicity, Saffron yield

Introduction

Saffron *Crocus sativus* L. is a perennial plant which grows in some regions of the world such as Iran, Italy and Greece (Koocheki *et al.*, 2013). Saffron is cultivated in limited areas of

Handling Editor: Ali Mokhtassi Bidgoli

*Corresponding author: e-izadi@um.ac.ir

Received: 24 November 2019, Accepted: 22 August 2020

Published online: 11 September 2020

the world. Iran, Greece, Morocco, Kashmir, Spain and Italy are the main countries dealing with Saffron production. Among these countries, Iran has more than 90% of the total world harvest area (Ghorbani, 2008). Saffron is a vulnerable crop to weed competition because of its short canopy and narrow leaves. So weeds are the major problem in saffron production (Rashed Mohassel, 1992). Weeds are mainly controlled mechanically or by hand in saffron fields. Although these traditional methods are

effective and environmentally friendly, they are expensive and time consuming (Behnia, 1992; Kumar *et al.*, 2009). On the other hand, mechanical control may cause severe damage to saffron which results in yield loss, due to its narrow rows (25 cm row spacing) and this makes hand weeding more difficult (Soufizadeh *et al.*, 2006).

Although very little research has been done on chemical weed control, some new herbicides have been introduced for saffron. Post emergence application of herbicides such as metribuzin, haloxyfop-r- methyl ester (Abbasi, 1996; Norouzzadeh and Delghandi, 2006; Soufizadeh et al., 2006) ioxynil (Norouzzadeh and Delghandi, 2006) and fluazifop-p-butyl (Abbasi, 1996; Vafabakhsh, 2001) had an acceptable efficacy in saffron weed control. In Poland, fluorochloridon and simazine applied in autumn, and cynazine and metamitron in spring were the most efficient control options (Hetman weed Laskowska, 1992). Bullitta et al. (1996) also reported that chlorthal and glyphosate had satisfactory results in weed control in rows of saffron in Spain. Pendimethalin (Rana et al., 1999), ethalfluralin (Abbasi 1996; Rahimian, 1993) and metribuzin (Sadrabadi Haghighi Ghanad Tosi, 2016) are recommended for weed control in saffron as pre-emergence. Abbassian et al.tank-mix showed that application haloxyfop-r-methly with oxyfluorfen metribuzin compared to ioxynil + haloxyfobr-metyl could significantly conrol weeds in saffron fields.

Other reports indicated that iodosulfuron methyl sodium + mesosulfuron methyl + mefenpyr Diethy (WG6%) herbicides can efficiently control grassy and broadleaf weeds, while they injure saffron plant. Haloxyfop-rmethyl ester also damage grassy weeds but decrease stigma and leaf yields of saffron (Zare Hosseini *et al.*, 2014). Galavi and Sarrani (2006) reported that 2, 4-D + MCPA herbicides were rejected, because they severely damaged saffron which resulted in chlorosis and elongation of the leaves.

This study was carried out in order to evaluate the tolerance of saffron to several preemergence and post-emergence herbicides at recommended and reduced doses to find selective herbicides for control of saffron weeds.

Materials and Methods

The study was conducted in 2016–2017 growing seasons, at the Kashmar Agricultural and Natural Resources Research Center, (58° 27°E, 35°11°N, and 1052 m a.s.l.) Khorasan-Razavi, Iran on a silt-loamy soil (36% sand, 11% clay and 53% silt, 0.585% organic matter) with a pH 7.94 and EC 1.23 dS m⁻¹. Some local meteorological data for the growing seasons are presented in Fig. 1. A randomized complete block design with 38 treatments and three replicates was used. The treatments are described in table 1. The experimental field was prepared according to the local practice for saffron cultivation and then plots were established. Each plot was 4 m² (2 m long and 2 m wide) and 0.5 m apart. Between blocks, 1 m alley was kept to eliminate influence of treatments.

Saffron mother corms weighing 6-8 g were selected from Kashmar saffron farms and were planted on 10th of Sep. 2016 in rows spaced 5 x 10 cm apart and at a depth of 15 cm. Irrigation and fertilization of saffron was carried out according to the local practice for saffron production and no pesticides were used throughout the growing seasons. Pre-emergence herbicides were applied before crust crushing after the first irrigation on 12th of October 2016 directly onto soil and post herbicides were applied on 14th of February 2016. Herbicides were sprayed with an electric knapsack sprayer (MATABI) (Goizeper S. Cooperative Company, Guipuzcoa, Spain) fitted with 8002 VS flat fan nozzles, calibrated to deliver 300 L ha⁻¹ of spray solution at a pressure of 2.5 KPa. To prevent spray drift and the adverse effects of the treatments on one another, adjacent plots were covered during spraying. Some characteristics of herbicides used in the experiment are shown in table 2.

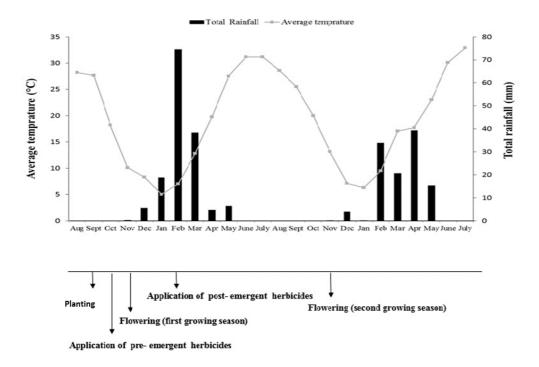


Figure 1 Monthly rainfall and average temperature during the two growing seasons (August 2016 until July 2018) at the I. R. of Iran Meteorological Organization (IRIMO).

Table 1 Dose and application time of herbicides used in the experiment.

Herbicide	Herbicides dose	Application
	(g i.a.ha ⁻¹) ¹	time
Trifluralin	1200.00	Preemergence
Pendimethalin	1485.00	Preemergence
Metribuzin	700.00	Preemergence
Metribuzin	525.00	Postemergence
Metribuzin	395.00 ²	Postemergence
Trifluralin + Metribuzin	960.00 + 350.00	Preemergence
Oxadiazon	750.00	Preemergence
Oxadiazon	500.00	Postemergence
Oxadiazon	375.00	Postemergence
Oxyfluorfen	720.00	Postemergence
Oxyfluorfen	505.00	Postemergence
Haloxyfop-r-methyl	162.00	Postemergence
Haloxyfop-r-methyl	120.00	Postemergence
Sethoxydim	375.00	Postemergence
Sethoxydim	280.00	Postemergence
Clethodim	120.00	Postemergence
Clethodim	90.00	Postemergence
Cycloxydim	150.00	Postemergence
Cycloxydim	112.00	Postemergence
Bentazon	1680.00	Postemergence

Table 1 continued		
Herbicide	Herbicides dose	Application
	(g i.a.ha ⁻¹) ¹	time
Bentazon	1260.00	Postemergence
Ioxynil	675.00	Postemergence
Ioxynil	506.00	Postemergence
Nicosulfuron	80.00	Postemergence
Nicosulfuron	60.00	Postemergence
Rimsulfuron	10.00	Postemergence
Rimsulfuron	7.50	Postemergence
Tribenuron methyl	15.00	Postemergence
Tribenuron methyl	11.25	Postemergence
Paraquat	600.00	Postemergence
Paraquat	450.00	Postemergence
Dicamba + Triasulfuron	115.00	Postemergence
Dicamba + Triasulfuron	87.00	Postemergence
Dicamba + Tritosulfuron	150.00	Postemergence
Dicamba + Tritosulfuron	112.00	Postemergence
Foramsulfuron	562.00	Postemergence
Foramsulfuron	420.00	Postemergence
Control	-	Postemergence

¹ Herbicides dose was determined according to the recommended rate for other crops and reduced doses were 75% of the recommended dose.

^{2.} Reduced doses are shown in boldface.

Table 2 Some characteristics of herbicides used in the experiment.

Technical name	Trade name	Formulation	Active ingredient (%)	Mode of action	Manufacturer
Trifluralin	Treflan	EC	48.0	Cell division inhibitor	Gyah Company
Pendimethalin	Stomp	EC	30.0	Cell division inhibitor	Ariashimi Company
Metribuzin	Sencor	WP	70.0	Photosystem II inhibitor	Gyah Company
Bentazon	Basagran	SL	48.0	Photosystem II inhibitor	Ghazalshimi
Ioxynil	Totril	EC	22.5	Photosystem II inhibitor	Ariashimi Company
Oxadiazon	Ronstar	EC	25.0	Protoporphyrinogen oxidase inhibitor (PPO)	e Gyah Company
Oxyfluorfen	Goal	EC	24.0	Protoporphyrinogen oxidase inhibitor (PPO)	e Ariashimi Company
Haloxyfop-r-methyl	Gallant Super	EC	10.8	ACCase Inhibitor	Gyah Company
Sethoxydim	Nabu-S	EC	12.5	ACCase Inhibitor	Gyah Company
Clethodim	Select Super	EC	12.0	ACCase Inhibitor	Arysta Life Science
Cycloxydim	Focus	EC	10.0	ACCase Inhibitor	Company of France BASF Germany Company
Nicosulfuron	Cruise	SC	4.0	ALS inhibitor	Gyah Company
Rimsulfuron	Titus	DF	25.0	ALS inhibitor	Dupont Company
Tribenuron methyl	Granstar	DF	75.0	ALS inhibitor	Ariashimi Company
Foramsulfuron	Equip	OD	22.5	ALS inhibitor	Bayer Company
Paraquat	Gramoxone	SL	20.0	Photosystem I inhibitor	Ariashimi Company
Dicamba + triasulfuron	Lenotre	WG	70.0		Syngenta Company
Dicamba + tritosulfuron	Arrat	Combi-pack solid/liquid (KK)	25.0 % tritosulfuron + 50.0 % dicamba	1	BASF Germany Company

ACCase: Acetyl CoA Carboxylase, ALS: Acetolactate synthase.

Herbicide phytotoxicity on saffron plants was determined 45 days after crust crushing for PRE herbicides and 7, 14, 28 and 42 days after spraying for post herbicides, they were then ranked using European Weed Research Council (EWRC) scale ranging from 1 (no injury to the crop) to 9 (death of the plants) (Sandral et al., 1997) (Table 3). In order to avoid the effect of weeds on saffron, weeds were removed throughout the growing season in all treatments. On 4th and 5th June 2017, five saffron plants were removed from each plot and growth characteristics including the number of replacement corms per plant and the total dry weight of corms were measured. In the second year, saffron flowers were manually picked daily from 25th of October to 15th of November 2017 and flower number and dried stigma yield were recorded. Stigmas were dried in an oven at 30 °C for 24 h to a constant weight before weighing (Koocheki *et al.*, 2013).

Table 3 Visual rating of injury caused by herbicides to weeds and crop based on EWRC scale.

Crop tolerance	Damage (%)	Evaluation score
No damage	0 - 1.0	1
Very little damage	1.0 - 2.5	2
More damage	2.5 - 7.0	3
Moderate and reversible damage	7.0 - 12.5	4
Moderate and consistent damage	12.5 - 20.0	5
Severe damage	20.0 - 30.0	6
Very severe damage	30.0 - 50.0	7
Nearly full kill	50.0 - 99.0	8
Full kill	99.0 - 100	9

Before data analysis, collected data were tested for normality and homogeneity of variances, using Kolmogorov-Smirnov test (SPSS 25). Analysis of variance (ANOVA) and Duncan's multiple range test (DMRT) were performed at 5% probability using SAS 9.3 software. Orthogonal comparisons were also used to compare herbicide groups effects at recommended and reduced doses.

Results

Herbicides phytotoxicity

Pre emergence herbicides treatments had very low phytotoxicity levels, which is characterized by a mild chlorosis in few plants (no injury). Therefore, their rating was disregarded based on EWRC rating system. In contrast, post emergence treatments showed higher levels of injuries ranging between 1 (slightly yellowing) and 8 (severe foliar chlorosis and necrosis), which indicated that the application of post emergence herbicides was responsible for the observed symptoms (Table 4). These effects included stunted plant growth, foliar chlorosis and necrosis and leaf tip chlorosis. Seven days after post herbicides spraying (DAS), the application of paraquat, oxyfluorfen, oxadiazon, ioxynil and bentazon respectively caused more injury compared to the other herbicides, (Table 4).

With regards to saffron phytotoxicity, a slight leaf chlorosis was observed in plants 7 DAS in treated plants with Acetyl CoA Carboxylase inhibitors including haloxyfop-r-(ACCase) methyl, sethoxydim, clethodim and cycloxydim metribuzin (Table 4). 14 DAS, treatments with acetolactate synthase (ALS) inhibitor herbicides showed more severe symptoms and the damages Continued until the end of the season (Table 4). An important point to highlight the use of ALS inhibitors is the fact that the injuries on the aerial parts of the plants were visible only after the second week of spraying, and increased from the third week on (Table 4).

Yield and yield components Flower number and flower weight

There was a significant difference among the treatments in flower number and flower

weight (P < 0.01) (Table 5). The highest and the lowest flower number and flower weight were obtained in control treatment and application of tribenuron methyl herbicide at recommended and reduced doses respectively. After tribenuron methyl, the application of nicosulfuron, dicamba triasulfuron and foramsulfuron, rimsulfuron caused a significant reduction in the flower number and flower weight. Also contact ioxynil, bentazon. herbicides such as paraquat, oxyloflurfene and oxadiazone injured saffron significantly. In which. caused less injury to saffron compared to sulfonylurea herbicides such as tribenuron methyl. Pre emergence application herbicides caused a significant reduction in the number and weight of saffron flowers. emergence herbicides, pre highest and the lowest number of flowers were recorded in pendimethalin trifluralin treatments respectively (Table 5). were no significant differences treatment between control and application emergence of haloxyfop-rmethyl and cycloxydim at recommended and reduced doses and clethodim, sethoxydim, metribuzin and oxadiazon in reduced doses According to the results, 5). increasing rimsulfuron dose from 7.5 to 10 g ai. ha⁻¹ and also dicamba + tritosulfuron from 112 to 150 g ai. ha⁻¹ caused a significant reduction in flower number and flower weight. Nonetheless, there was no significant difference between recommended and reduced doses of the other herbicides (Table 5).

Dried stigma yield

The effects of herbicides on stigma yield, were significant (p < 0.01) (Table 5). The highest stigma dry weight (0.54 g. m-2) belonged to control treatment, while among herbicide treatments the highest yields were recorded in post emergence application of haloxyfop-rmethyl and cycloxydim at recommended and reduced doses and the application of sethoxydim metribuzin, clethodim, and

oxadiazon at reduced doses. (Table 5). The lowest dried stigma yield were recorded from plots under post emergence application of tribenuron methyl, nicosulfuron, dicamba +

triasulfuron, foramsulfuron, rimsulfuron and dicamba + tritosulfuron respectively, which revealed that these herbicides have a high potential to damage saffron (Table 5).

Table 4 Visual rating of injury caused to saffron after herbicide applications based on EWRC scale.

Treatments	Herbicides dose (g ai.ha ⁻¹) ¹	Phytointoxication (EWRC scale – Notes 1-9) ²				
		7 DAS ³	14 DAS	28 DAS	42 DAS	
Control	-	1	1	1	1	
Clethodim	90.00	1	1	1	1	
Haloxyfop-r-methyl	120.00	1	1	1	1	
Haloxyfop-r-methyl	162.00	1	2	1	1	
Metribuzin	395.00	1	1	2	1	
Sethoxydim	280.00	1	2	1	1	
Clethodim	120.00	1	2	2	1	
Cycloxydim	112.00	1	2	1	1	
Metribuzin	525.00	1	2	2	2	
Sethoxydim	375.00	1	2	1	1	
Cycloxydim	150.00	2	2	2	1	
Dicamba + Triasulfuron	87.00	2	3	4	4	
Dicamba + Tritosulfuron	112.00	2	3	3	4	
Foramsulfuron	420.00	2	3	4	5	
Ioxynil	506.00	2	3	3	2	
Rimsulfuron	7.50	2	3	4	5	
Dicamba + Triasulfuron	115.00	2	3	5	5	
Dicamba + Tritosulfuron	150.00	2	3	5	6	
Foramsulfuron	562.00	2	3	4	6	
Nicosulfuron	60.00	2	3	4	5	
Nicosulfuron	80.00	2	3	5	6	
Rimsulfuron	10.00	2	3	5	6	
Tribenuron methyl	11.25	2	3	4	6	
Oxadiazon	375.00	2	3	4	3	
Tribenuron methyl	15.00	2	3	4	6	
Bentazon	1440.00	3	3	3	2	
Bentazon	1260.00	3	4	4	3	
Ioxynil	675.00	3	4	4	3	
Oxadiazon	500.00	3	4	5	4	
Oxyfluorfen	505.00	4	5	5	4	
Oxyfluorfen	720.00	5	6	6	4	
Paraquat	450.00	7	7	6	5	
Paraquat	600.00	8	7	7	6	

¹ Bold font is used to designate reduced doses.

² European Weed Research Council (EWRC).

³ DAS: days after spraying.

Table 5 Mean comparison of saffron traits in different herbicide treatments.

Treatment ¹	Mode	Herbicides dose (g ai.ha ⁻¹) ²	Flower number (m ⁻²)	Flower fresh weight (g.m ⁻²)	dried stigma yield (g. m ⁻²)	Number of replacement corm per clone	Total dry weight of corms (g.plant ⁻¹)
Control	_	_	119.00 a	48.00 a	0.54 a	8.90 a	27.93 a
HALO	post	120.00	117.00 ab	47.88 a	0.53 ab	8.80 a	27.46 ab
HALO	post	162.00	115.30 ab	45.37 ab	0.51 a-c	8.63 ab	26.56 a-c
CYCL	post	112.00	115.00 ab	44.10 a-c	0.49 a-d	8.60 ab	26.56 a-d
CLETH	post	90.00	114.67 a-c		0.49 a-d	8.60 ab	27.00 a-c
METR	post	395.00	113.33 a-d		0.49 a-d	8.43 a-c	26.23 a-e
CYCL	post	150.00	111.67 a-e		0.48 a-e	8.36 a-c	25.83 a-f
SETH	post	280.00	111.37 a-e		0.48 a-e	3.36 a-c	26.50 a-d
OXAD	post	375.00	109.67 a-f		0.48 a-c 0.47 a-e	8.23 a-d	25.53 a-g
METR	-	525.00	109.07 a-1 109.33 b-g		0.47 a-c 0.47 b-f	8.16 a-d	25.20 a-g
PEND	post	1485.00	109.55 b-g 108.67 b-g				-
	pre	120.00	108.67 b-g 105.67 b-h		0.46 c-f 0.45 c-g	8.16 a-d 7.80 a-f	25.30 a-g 24.36 b-i
CLETH	post				•		
SETH	post	375.00	104.30 b-h	•	0.45 c-h	8.00 a-e 7.80 a-f	24.86 a-h
METR	pre	700.00	104.30 b-h		0.453 c-h		23.86 c-k
OXYF	post	505.00	102.30 b-i	38.90 c-h	0.43 d-j	7.63 b-f	23.46 d-k
OXAD	post	500.00	100.00 c-i	38.68 c-h	0.43 d-j	7.46 c-g	23.16 d-k
OXYF	post	720.00	99.00 d-j	37.64 d-h	0.41 f-j	7.43 c-g	22.76 e-k
TRIF + METR	pre	960.00 + 350.00		37.74 d-h	0.42 e-j	7.30 c-g	22.46 f-k
TRIF	pre	1200.00	95.30 f-j	36.56 g-j	0.41 f-j	7.13 e-h	22.26 g-l
BENT	post	1260.00	94.00 g-j	35.19 g-j	0.39 g-k	7.03 e-h	21.70 h-l
RIM	post	7.50	92.00 h-k		0.39 g-k	6.90 e-h	21.60 h-l
IOXY	post	506.00	92.00 h-k		0.39 g-k	6.90 e-h	21.30 i-l
OXAD	pre	500.00	91.67 h-k		0.37 j-l	6.86 e-h	21.43 h-l
DICA + TRIT	post	112.00	91.67 h-k		0.38 i-l	6.86 e-h	21.63 h-l
PARA	post	450.00	91.00 h-k	•	0.37 j-l	6.86 e-h	21.40 h-l
BENT	post	1680.00	88.67 i-k	30.15 i-k	0.34 k-m	6.73 f-h	20.80 j-l
IOXY	post	675.00	85.30 jk	28.75 k	0.32 lm	6.46 gh	19.96 kl
PARA	post	600.00	78.00 k	26.25 k	0.29 m	6.06 h	18.961
DICA + TRIT	post	150.00	60 1.001	19.811	0.22 n	4.43 i	14.10 m
RIM	post	10.00	58.671	15.121	0.21 n	4.36 i	13.63 m
FORAM	post	420.00	50 1.001	16.371	0.17 n	3.80 i	11.90 m
FORAM	post	560.00	46.671	15.121	0.18 n	3.76 i	11.73 m
DICA + TRIA	post	87.00	26.671	8.65 m	0.097 o	1.96 j	6.20 n
NICO	post	60.00	25.30 m	8.22 m	0.09 o	1.90 j	6.13 n
DICA + TRIA	post	115.00	22.00 m	7.04 m	0.08 o	1.75 j	5.60 n
NICO	post	80.00	15.00 mn	4.70 mn	0.05 op	1.33 j	3.86 n
TRI	post	11.25	2.30 n	0.72 n	0.01 p	0.26 k	0.80 o
TRI	post	15.00	1.00 n	0.31 n	0.00p	$0.10\mathrm{k}$	0.30 o
ANOVA	df		Mean squar				
Replication	2		269.93*	30.58 ^{ns}	0.00^{*}	1.66*	17.01**
Treatment	37		3653.20**	626.62**	0.06**	20.07**	192.46**
Error	74		60.25	9.86	0.00	0.33	3.22
CV (%)	2		9.31	10.25	9.87	9.70	9.21

Abbreviation: TRIF, Trifluralin; PEND, Pendimethalin; METR, Metribuzin; OXAD, Oxadiazon; OXYF, Oxyfluorfen; HALO, Haloxyfopr-methyl; SETH, Sethoxydim; CLETH, Clethodim; CYCL, Cycloxydim; BENT, Bentazon; IOXY, Ioxynil; NICO, Nicosulfuron; RIM, Rimsulfuron; TRI, Tribenuron methyl; PARA, Paraquat; DICA, Dicamba; TRIA, Triasulfuron; TRIT, Tritosulfuron; FORAM, Foramsulfuron.

In each column means with same letter according to Duncan's test are not significantly different at 5% level of probability. ns, * and ** represent non-significant, significant at 5% and 1% probability level, respectively.

Foramsulfuron.

² Bold font is used to designate reduced doses.

It seems that ALS inhibitor herbicides cannot be applied in saffron fields even at reduced doses. Orthogonal comparisons revealed that flower number and dried stigma yield, were significantly decreased in the treatments including ALS inhibitor herbicides compared to the other herbicide treatments (Table 6). Although ALS inhibitor herbicides showed less phytotoxicity symptoms, compared to paraquat herbicide, the translocation of these herbicides to corms caused a significant decrease in corms weight and dried stigma yield (table 6).

Number and weight of replacement corms

Results showed that there was significant difference between treatments in the number of corms and total dry weight of corms (P < 0.01) (Table 5). The highest number of replacement corm per clone (8.9) and total dry weight of corms (27.93 g) was observed in control treatment with no significant difference with pendimethalin, haloxyfop-r-methyl, sethoxydim, metribuzin, and

cycloxydim at recommended and reduced doses and clethodim, oxyfluorfen and oxadiazon at reduced doses. On the other hand, the lowest number of corms and total dry weight of corms was observed in plots that were treated with tribenuron methyl herbicide at recommended and reduced doses (Table 5).

Orthogonal comparison

In general, orthogonal comparison showed that by reducing the herbicides dose, their injury to saffron was reduced. post emergence herbicides at recommended and reduced doses, reduced saffron flower yield (flower number and dried stigma yield) and total dry weight of corms significantly ($p \le 0.01$). ALS inhibitor herbicides decreased flower number, dried stigma yield and total dry weight of corms significantly compared to ACCase inhibitor herbicides. Among herbicides, ALS inhibitor herbicides were the most harmful. (Table 6).

Table 6 Orthogonal comparison of the effect of treatments on the number of saffron flowers, dried stigma yield, total dry weight of corms.

Contrasts	Flowers number (m ⁻²)	Dried stigma yield (g. m ⁻²)	Total dry weight of corms (g.plant ⁻¹)
Post-emergent herbicides in recommended rates vs. Post-emergent herbicides in reduced rates	75.04 vs. 84.33**	0.32 vs. 0.37**	17.60 vs. 19.70**
ACCase Inhibitor herbicides vs. ALL ¹	111.96 vs. 74.21**	0.49 vs. 0.32**	26.15 vs. 17.36**
ALS inhibitor herbicides vs. ALL ²	36.37 vs. 95.10**	0.18 vs. 0.40**	8.75 vs. 22.16**
Paraquat vs. ALS inhibitor herbicides	84.50 vs. 36.37*	0.33 vs. 0.18**	20.18 vs. 8.75**

^{1.} Comparison of the ACCase Inhibitor herbicides (Haloxyfop-r-methyl, Sethoxydim, Clethodim and Cycloxydim) to the average of all other herbicide treatments.

Discussion

Based on the results, saffron is sensitive to herbicides and herbicide options for this plant are limited. Among the applied herbicides oxyfluorfen and paraquat, oxadiazon, caused higher phytotoxicity compared to other herbicides. Similar results were obtained by Abbasian et al. (2014) who reported that oxyflurfen injured saffron severely by chlorosis of the

Other results showed oxyfluorfen induced necrotic damages on saffron leaves, which were tolerable for the plant and bromoxynil and ioxinil had undesirable effects saffron causing on chlorosis and necrosis (Galavi and Sarrani, 2006). ACCase inhibitor herbicides caused the least injury, while ALS inhibitor herbicides damaged saffron severely. Abbasian et al. (2014) also reported similar results from the application of metribuzin+

^{2.} Comparison of the ALS inhibitor herbicides (Nicosulfuron, Rimsulfuron, Tribenuron methyl and Foramsulfuron) to the average of all other herbicide treatments.

^{*} and ** represent significant at P < 0.05 and P < 0.01, respectively, based on orthogonal contrasts.

haloxyfop-r-methyl herbicides. Undesirable effects of haloxyfop-r-methyl herbicide in the form of foliar chlorosis along with the early dieback of plant have been reported in previous studies (Amiri, 1990; Abbasi, 1996; Zare Hosseini et al., 2014; Behravan et al., 2016). Vafabakhsh (2001) reported that the application of atrazine, haloxyfop and metribuzin in saffron induced yellowing and early senescing of saffron leaves. But Galavi Saaraani (2006)mentioned metribuzin did not damage saffron and could successfully control weeds. Among pre emergence herbicides, the highest stigma yield was recorded in pendimethalin emergence herbicide post and also application of metribuzin, oxadiazone and oxyfluorfen caused greater dried stigma than the other post emergence herbicides. Other researchers have reported that trifluralin and ethalfluralin caused significant injury and yield loss of saffron (Norouzzadeh and Delghandi, Sadrabadi Haghighi and Ghanad Tosi, 2016). In contrast, some studies showed that pre emergence application of ethalfluralin has the least effect on saffron yield (Rahimian, 1993; Abbasi, 1996).

Conclusion

The lowest number of flowers and stigma dry weight were obtained in control treatment and post emergence application of tribenuron methyl herbicide respectively. Although, herbicides can cause severe phytotoxicity symptoms in saffron and reduce dried stigma yield, some of these herbicide types such as oxadiazone and oxyfluorfen have a high potential for application in saffron fields. Among pre emergence herbicides, the highest saffron yield was recorded in pendimethalin treatment, namely it had better performance compared to other pre emergence herbicides in saffron fields. Generally, our results showed that the post emergence herbicides of haloxyfop-rmethyl, sethoxydim, clethodim, cycloxydim, metribuzin, oxadiazon and oxyfluorfen and also pre-emergent herbicides of pendimethalin and metribuzin have high potential to be used in saffron fields. The application of herbicides in their reduced doses decreased their phytotoxicity significantly. Saffron phytotoxicity was lower in treated plants with ACCase inhibitors than the other herbicides.

Acknowledgments

The authors gratefully would like to acknowledge the Ferdowsi University of Mashhad for their support and contribution to this study.

References

- Abbasi, M. E. 1996. The effect of different herbicides on saffron (*Crocus sativus* L.) weeds. M. Sc. Thesis, Ferdowsi University of Mashhad, Mashhad, Iran.
- Abbasian, M, Bazobandy, M. and Soohany Darban, A. S. 2014. Effect of Application Single and mixed herbicides on weeds and weight saffron corm at Neyshabur. Journal of Weed Ecology, 1(1): 9-20.
- Amiri, H. 1990. Assessment of the impact of some herbicides on weed species of saffron in South Khorasan. Plant Disease and Pest Research Organization, Mashhad, Iran.
- Behnia, M. R. 1992. Saffron Crop. Tehran University Press, Tehran, Iran.
- Behravan. R., Eslami, S. V., Behdani, M. A. and Zand, E. 2016. Evaluation of Mixing Some ACCase Inhibitor Herbicides with Liquid Fertilizer PROLEX on Growth Characteristics and Yield of Saffron (*Crocus sativus* L.). Journal of Saffron Research (semi-annual), 4(1): 42-52.
- Bullitta, P., Milia, M., Pinna, M. E., Satta, M. and Scarpa, G. M. 1996. Sowing density and corm growth: two fundamental aspects of the cultivation of saffron. Rivista Italiana EPPOS, 19: 139-145.
- Gelavi, M. and Saaraani, M. 2006. Chemical control of weed species in saffron fields of Zahak region of Zabol. Agricultural Research Organization of Sistaan, Zabol Branch, Zabol, Iran.

- Ghorbani, M. 2008. The Efficiency of Saffron's Marketing Channel in Iran. World Applied Sciences Journal, 4(4): 523-527.
- Hetman, J. and Laskowska, H. 1992. An evaluation of herbicides for field cultivation of *Crocus*. Acta Horticulture, 325: 815-819.
- Koocheki, A. 2013. Research on production of Saffron in Iran: Past trend and future prospects. Journal of Saffron Agronomy & Technology, 1(1): 3-21.
- Kumar, R., Singh, V., Devi, K., Sharma, M., Singh, M. K. and Ahuja, P. S. 2009. State of Art of Saffron (*Crocus sativus* L.) Agronomy: A Comprehensive Review, Food Reviews International, 25: 44-85.
- Norouzzadeh, S. and Delghandi, M. 2006. Chemical weed control in saffron. Proceedings of the 17th Iranian Plant Protection Congress, Karaj, Iran.
- Rahimian, H. 1993. Evaluation of some herbicides in weed control of saffron fields. Scientific and Industrial Research Organization, Mashhad, Iran.
- Rana, R. S., Rana, S. S., Jangpo, B. and Angiras, N. N. 1999. Integrated weed management in saffron (*Crocus sativus* L.). Indian Journal of Weed Science. 31: 269-270.
- Rashed Mohassel, M. H. 1992. Weeds of South Khorasan saffron fields. Journal of Agricultural Science and Technology, 6: 118-135.

- Sadrabadi Haghighi, R. and Ghanad Tosi, M. B. 2016. The Effect of Pre-emergence Application of some Common Herbicides on Weed Population, Vegetative Growth, Flower and Corm Characteristics of Saffron (*Crocus sativus* L.). Journal of plant protection, 30(1): 118-126.
- Sandral, G. A., Dear, B. S., Pratley, J. E. and Cullis, B. R. 1997. Herbicide dose rate response curve in subterranean clover determined by a bioassay. Australian Journal of Experimental Agriculture, 37: 67-74.
- Soufizadeh, S., Zand, E., Baghestani, M. A. and Sheibany, K. 2006. Integrated Weed Management in Saffron (*Crocus sativus*), 2nd International Symposium on Saffron Biology and Technology, Mashhad, Iran.
- Vafabakhsh, K. 2001. The effects of chemical and mechanical control of weeds in saffron fields on dynamics and productivity of weeds and saffron. Proceedings of the International Conference held at the Brighton, Hilton Metroplole hotel Brighton, UK, 12-15 November 2001. pp. 329-332.
- Zare Hosseini, H., Ghorbani, R., Rashed Mohassel, M. H. and Rahimi, H. 2014. Effects of weed management strategies on weed density and biomass and saffron (*Crocus sativus*) yield. Saffron Agronomy & Technology, 2(1): 45-58.

ارزیابی تحمل زعفران .Crocus sativus L به برخی از علف کشها

زهرا حسینی ایوری'، ابراهیم ایزدی دربندی' * ، محمد کافی' و حسن مکاریان 7

۱- گروه اگروتکنولوژی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران. ۲- گروه زراعت و اصلاح نبات، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، شاهرود، ایران. يست الكترونيكي نويسنده مسئول مكاتبه: e-izadi@um.ac.ir دریافت: ۳ آذر ۱۳۹۸؛ پذیرش: ۱ شهریور ۱۳۹۹

چکیده: کنترل علفهای هرز در مزارع زعفران بسیار ضروری است، اما تاکنون هیچ علفکش اختصاصی جهت کنترل علفهای هرز زعفران ثبت نشده است. این آزمایش در قالب طرح بلوکهای کامل تصادفی با سه تکرار در طول سالهای ۱۳۹۶-۱۳۹۵ انجام شد. تیمارها شامل کاربرد علف کشهای: تریفلورالین، پندیمتالین، متریبوزین، آیوکسینیل، بنتازون، اگزادیازون، اکسیفلورفن، سيتوكسيديم، هالوكسى فوپ آرمتيل، كلتوديم، سيكلوكسيديم، نيكوسولفورون، ريم سولفورون، ترى بنورون متیل، فورام سولفورون، پاراکوات، دای کامبا + تریاسولفورون، دای کامبا + تریتوسولفورون در مقادیر توصیه شده و کاهش یافته بود. ویژگیهای زعفران شـامل تعـداد گـل، وزن تـر و خـشک گـل و کلاله، وزن خشک برگ، تعداد بنهها و وزن کل بنهها اندازه گیری شد. در اواخر شهریور ۱۳۹۵ بنههای مادری در فواصل ۱۰ × ۵ سانتیمتر و عمق ۱۵ سانتیمتر کشت شدند. نتـایج نـشان داد زمـانیکـه از علفکشهای پیش رویشی استفاده شدند علائم گیاهسوزی بر روی زعفران مشاهده نشد، اما کاربرد پس رویشی علف کشها سطوح متفاوتی از گیاهسوزی از شدید تا خفیف را نشان داد. کاربرد پاراکوات، اکسیفلورفن و اگزادیازون بهترتیب سطوح بالاتری از گیاهسوزی در مقایسه با دیگر علف کشها ایجاد کردند. براساس نتایج آزمایش، علفکشهای بازدارنده استیل کوآنزیم آ کربوکسیلاز حداقل خسارت به زعفران را ایجاد کردند، درحالی که علف کشهای بازدارنده ALS به شدت به زعفران خسارت وارد کردند. بیشترین و کمترین وزن خشک کلاله بهترتیب از تیمار شاهد (۱/۵۴ گرم بر متر مربع) و کاربرد پس رویشی تری بنورون متیل (۰/۰۰۳ گرم بر متر مربع) به دست آمد. در بین علف کـشهـای پـیش رویـشی، بیش ترین وزن خشک کلاله با کاربرد علف کش پندیمتالین بهدست آمد. همچنین از کاربرد پسرویشی متریبوزین، اگزادیازون و اکسیفلورفن در مقایسه با دیگر علفکشهای پهنبرگکش، وزن خشک کلاله بیش تری بهدست آمد. زمانی که علف کشها در مقادیر کاهش یافته استفاده شدند عملکرد افـزایش و گیاهسوزی کاهش یافت. در بین علف کشهای مورد بررسی، تریفلورالین، اکسیفلورفن، پندیمتالین و متری بوزین به عنوان علف کشهای انتخابی در زعفران به کار برده شوند.

واژگان کلیدی: علف کش، عملکرد زعفران، کنترل شیمیایی، گیاهسوزی